Featured Research

from universities, journals, and other organizations

MIT Scientist Unveils Device To Convert Excess Heat Into Electricity

Date:
November 29, 2001
Source:
Massachusetts Institute Of Technology
Summary:
An MIT scientist and a colleague have invented a semiconductor technology that could allow efficient, affordable production of electricity from a variety of energy sources without a turbine or similar generator.

CAMBRIDGE, Mass. -- An MIT scientist and a colleague have invented a semiconductor technology that could allow efficient, affordable production of electricity from a variety of energy sources without a turbine or similar generator. The researchers will present the work at a poster session November 27 during the Materials Research Society's fall meeting in Boston.

Many researchers have worked to convert heat to electricity directly without the moving parts of a generator. Among other advantages, such a device would be virtually silent, vibration-free, and low in maintenance costs. Until now, however, the efficiency of such devices has been a problem. The amount of electricity they produce from a given amount of energy has been low.

The new device is two times more efficient than its closest commercial competitor. "That such good results were obtained in the first generation of the new device technology ... indicates that the general approach has great promise for improved performance in more mature implementations," write Associate Professor Peter L. Hagelstein of MIT's Department of Electrical Engineering and Computer Science and Dr. Yan Kucherov of ENECO, Inc., in the paper accompanying their poster.

The new technology could have major implications for the recovery of waste heat from power plants and automobiles. For example, the heat lost through engine exhausts might be captured by the technology and converted into electricity to augment or replace a vehicle’s electrical and air conditioning systems. It could also be important in the primary generation of electrical power.

The technology is based on thermionics, which originated nearly a century ago with the basic vacuum tube, a device that consisted of two parallel conductive plates (cathode and anode) separated by a vacuum gap. In this high temperature tube, electrons boiled off the cathode, traversed the gap and then were absorbed into the colder anode. The conversion of heat to electricity "occurs as the electrons transport 'uphill' against an electric field in the gap region," said Hagelstein, who is also affiliated with MIT's Research Laboratory of Electronics.

These early "vacuum gap" designs had prohibitive manufacturing costs and high operating temperatures -- above 1,000 Celsius (about 2,000 Fahrenheit) -- which has limited the technology to nuclear-powered converters in space probes, satellites and special military systems.

The new technology essentially replaces the traditional vacuum gap with a multi-layer semiconductor structure. Hagelstein credits Professor Gerald D. Mahan of the University of Tennessee with first suggesting such a solid-state implementation of vacuum thermionics. Hagelstein and Kucherov demonstrated two basic enabling physical mechanisms that allow this technology to be implemented practically.

Louis D. Smullin, MIT Professor of Electrical Engineering, Emeritus, said of the new work: "Thermocouples and thermopiles have been with us for over a century. I believe that these new devices represent the first big step in performance of these devices. In the 50s there was much hope that direct conversion of heat to electricity would open up a new era, but it was not to be. With these new devices, maybe these dreams will come true."

By careful selection of materials, ENECO scientists are creating highly efficient, solid state conversion devices, called "thermal diodes," that will operate from 200 to 450 Celsius -- typical temperatures for waste heat and for concentrated solar radiation.

An added plus: the technology is environmentally friendly. "Solid state thermal to electric energy conversion converts energy due to how electrons transport in the conductor, a process that generates no pollution," Hagelstein said. He noted, however, that some of the materials used in the present generation of devices are toxic, which will affect the eventual disposal of the devices.

The work has been sponsored by ENECO with additional support from the Defense Advanced Research Projects Agency (DARPA). Technical development is now focused on optimizing the types of materials used in the construction of the thermal diodes.

Hagelstein is a technical consultant for ENECO, which is developing the technology and has applied for patents in the US and Europe. At least one patent has been issued.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "MIT Scientist Unveils Device To Convert Excess Heat Into Electricity." ScienceDaily. ScienceDaily, 29 November 2001. <www.sciencedaily.com/releases/2001/11/011128173305.htm>.
Massachusetts Institute Of Technology. (2001, November 29). MIT Scientist Unveils Device To Convert Excess Heat Into Electricity. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2001/11/011128173305.htm
Massachusetts Institute Of Technology. "MIT Scientist Unveils Device To Convert Excess Heat Into Electricity." ScienceDaily. www.sciencedaily.com/releases/2001/11/011128173305.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins