Featured Research

from universities, journals, and other organizations

Sensitive Measurement By Sudbury Neutrino Observatory Observes Solar Neutrinos In A New Way

Date:
April 22, 2002
Source:
Brookhaven National Laboratory
Summary:
A team of scientists from Canada, the US and the UK announced the results of a unique new measurement of the total number of all known neutrino types reaching the Earth from the Sun. Using data entirely from the Sudbury Neutrino Observatory (SNO) in Canada they are also able to determine that the observed number of electron neutrinos (the type produced by the Sun) is only a fraction of the total number. This shows with great certainty that neutrinos from the Sun change from one type to another before reaching the Earth.

April 20, 2002 -- A team of scientists from Canada, the US and the UK today announced the results of a unique new measurement of the total number of all known neutrino types reaching the Earth from the Sun. Using data entirely from the Sudbury Neutrino Observatory (SNO) in Canada they are also able to determine that the observed number of electron neutrinos (the type produced by the Sun) is only a fraction of the total number. This shows with great certainty that neutrinos from the Sun change from one type to another before reaching the Earth.

Says Project Director Art McDonald of Queen's University, "These new results show in a clear, simple and accurate way that solar neutrinos change their type. The total number of neutrinos we observe is also in excellent agreement with calculations of the nuclear reactions powering the Sun. The SNO team is really excited because these measurements enable neutrino properties such as mass to be specified with much greater certainty for fundamental theories of elementary particles."

Neutrinos are particles with no electric charge and very little mass. They are known to exist in three types related to three different charged particles - the electron and its lesser known relatives the muon and the tau. The Sun emits electron-neutrinos, which are created in the thermonuclear reactions in the solar core. Previous experiments have found fewer electron-neutrinos than suggested by calculations based on how the Sun burns - the famous "solar neutrino problem."

SNO uses the unique properties of heavy water - where the hydrogen has an extra neutron in its nucleus - to detect not only electron-neutrinos through one type of reaction, but also all three known neutrino types through a different reaction. The results presented today at the Joint American Physical Society/American Astronomical Society meetings in Albuquerque, New Mexico show that the number of electron-neutrinos observed is only about 1/3 of the total number reaching the Earth. This shows unambiguously that electron-neutrinos emitted by the Sun have changed to muon- or tau-neutrinos before they reach Earth.

Dr. Andre Hamer of Los Alamos National Laboratory told the meeting, "In order to make these measurements we had to restrict the radioactivity in the detector to minute levels and determine the background effects very accurately to show clearly that we are observing neutrinos from the Sun. The care taken throughout this experiment to minimize radioactivity and the careful calibration and analysis of our data has enabled us to make these neutrino measurements with great accuracy."

In June 2001, results from the detection of electron-neutrinos in SNO first indicated, with a certainty of 99.9%, that neutrinos change type on their way from the Sun, thus solving the long-standing problem. However, these conclusions were based on comparisons of results from SNO with those from a different experiment, the Super-Kamiokande detector in Japan. The new results, obtained entirely from the SNO, are so accurate that it is 99.999% probable that solar neutrinos change type before reaching Earth. The results, which have been submitted to Physical Review Letters, are of great importance because the way in which the neutrinos - long thought to be massless particles - change types is thought to be linked to neutrino mass and mass differences between various neutrino types.

Says Professor Hamish Robertson of the University of Washington, "It was a dramatic and exciting moment for us when we first saw the neutrons being produced by this type of neutrino interaction and realized there were three times as many as you would get if only electron neutrinos were coming from the Sun. There's absolutely no question the neutrino type changes and now we know quite precisely the mass differences between these particles."

Dr. Richard (Dick) Hahn, leader of the Brookhaven National Laboratory group that is working in SNO, agreed. "These results are exciting because they demonstrate the full potential of the SNO neutrino detector," said Hahn. "All of the collaboration's hard work over many years is really paying off now."

Brookhaven's history of neutrino research dates to the early 1970s, when scientist Ray Davis's pioneering work in a South Dakota gold mine sent the neutrino world into an uproar by first documenting the missing electron neutrinos.

* Collaborating institutions -- From Canada: Queen's University, Carleton University, Laurentian University, University of Guelph, University of British Columbia, Chalk River Laboratories (to 1996). From the U.S.: Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Pennsylvania, University of Washington, Brookhaven National Laboratory, Princeton University (to 1992), University of California at Irvine (to 1989). From the U.K.: Oxford University.

The U.S. Department of Energy's Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is operated by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Sensitive Measurement By Sudbury Neutrino Observatory Observes Solar Neutrinos In A New Way." ScienceDaily. ScienceDaily, 22 April 2002. <www.sciencedaily.com/releases/2002/04/020422072526.htm>.
Brookhaven National Laboratory. (2002, April 22). Sensitive Measurement By Sudbury Neutrino Observatory Observes Solar Neutrinos In A New Way. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2002/04/020422072526.htm
Brookhaven National Laboratory. "Sensitive Measurement By Sudbury Neutrino Observatory Observes Solar Neutrinos In A New Way." ScienceDaily. www.sciencedaily.com/releases/2002/04/020422072526.htm (accessed September 1, 2014).

Share This




More Space & Time News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins