Featured Research

from universities, journals, and other organizations

Astronomers Find Jupiter-Like Weather On Brown Dwarfs

Date:
May 27, 2002
Source:
University Of California - Los Angeles
Summary:
For the first time, researchers have observed planet-like weather acting as a major influence on objects outside our solar system, scientists from UCLA and NASA report May 23. The UCLA-NASA team has found cloudy, stormy atmospheres on brown dwarfs, the celestial bodies that are less massive than stars but have more mass than giant planets like Jupiter. The discovery will give scientists better tools for interpreting atmospheres and weather on brown dwarfs or on planets around other stars.

For the first time, researchers have observed planet-like weather acting as a major influence on objects outside our solar system, scientists from UCLA and NASA report May 23.

The UCLA-NASA team has found cloudy, stormy atmospheres on brown dwarfs, the celestial bodies that are less massive than stars but have more mass than giant planets like Jupiter. The discovery will give scientists better tools for interpreting atmospheres and weather on brown dwarfs or on planets around other stars.

“The best analogy to what we witness on these objects are the storm patterns on Jupiter,” said Adam Burgasser, astronomer at UCLA and lead author of the study. “But I suspect the weather on these more massive brown dwarfs makes the Great Red Spot look like a small squall.”

The UCLA-NASA findings will be reported in the June 1 issue of the Astrophysical Journal Letters.

Jupiter’s Great Red Spot is a massive storm more than 15,000 miles across and with winds of up to 270 miles per hour. Burgasser teamed with planetary scientist Mark Marley, meteorologist Andrew Ackerman of NASA Ames Research Center in California’s Silicon Valley, and other collaborators to propose how weather phenomena could account for puzzling observations of brown dwarfs.

“We had been thinking about what storms might do to the appearance of brown dwarfs,” Marley said. “And when Adam showed us the new data, we realized there was a pretty good fit.” The team calculated that using a model with breaks or holes in the cloudy atmosphere solved the mysterious observations of cooling brown dwarfs.

Brown dwarfs, only recently observed members of the skies, are “failed stars at best,” Ackerman said. Not massive enough to sustain the burning of hydrogen, like stars, brown dwarfs go through cooling stages that scientists observe with infrared energy-detecting telescopes. They appear as a faint glow, like an ember from a fire that gives off both heat and light energy as it dims.

Astronomers expected brown dwarfs, like most objects in the universe, to grow steadily fainter as they cool. However, new observations showed that during a relatively short phase, brown dwarfs appear to get brighter as they cool. The explanation lies in the clouds.

At least 25,000 times fainter than the sun, brown dwarfs are still incredibly hot, with temperatures as high as 3,140 degrees Fahrenheit (2,000 degrees Kelvin). At such high temperatures, substances such as iron and sand are in gaseous form. As brown dwarfs cool, these gases condense in the atmosphere into liquid droplets to form clouds, similar to water clouds on Earth. As the brown dwarf cools further, atmospheric weather patterns cause a rapid clearing of the clouds; as the clouds are whisked away by the storms, bright infrared light from the hotter atmosphere beneath the clouds escapes, accounting for the unusual brightening of the brown dwarfs.

“The model developed by the group for the first time matches the characteristics of a very broad range of brown dwarfs, but only if cloud clearing is considered,” Burgasser said. “While many groups have hinted that cloud structures and weather phenomena should be present, we believe we have actually shown that weather is present and can be quite dramatic.”

By using Earth’s weather as a starting point, Ackerman helped the team work the storms — including wind, downdrafts and iron rain — into their calculations. “The astrophysicists needed some help understanding rain because it’s not an important process in most stars,” Ackerman said. “We used observations and simulations of terrestrial clouds to estimate the effect of iron rain on the thickness of an iron cloud.”

The study will help researchers determine the makeup of atmospheres outside our solar system.

“Brown dwarfs have traditionally been studied like stars, but it’s more of a continuum,” Marley said. “If you line a mug shot of Jupiter up with these guys, it is just a very low-mass brown dwarf.”

Brown dwarfs serve as a training ground for scientists to learn how to interpret observations of planet-like objects around other stars, Marley said. “Everybody wants to find brown dwarfs that are even colder and have water clouds just like Earth. Once we find those, that will be a good test of our understanding.”

###NASA, the National Science Foundation and the Hubble Postdoctoral Fellowship funded this study, and supplied much of the data. Other collaborating institutions include Vanderbilt University, Nashville, Tenn.; Washington University, St. Louis; U.S. Naval Observatory, Washington, D.C.; and California Institute of Technology, Pasadena, Calif.

More information about this study is available at: http://www.journals.uchicago.edu/ApJ/journal/contents/ApJL/v571n2.html


Story Source:

The above story is based on materials provided by University Of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Los Angeles. "Astronomers Find Jupiter-Like Weather On Brown Dwarfs." ScienceDaily. ScienceDaily, 27 May 2002. <www.sciencedaily.com/releases/2002/05/020524072411.htm>.
University Of California - Los Angeles. (2002, May 27). Astronomers Find Jupiter-Like Weather On Brown Dwarfs. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2002/05/020524072411.htm
University Of California - Los Angeles. "Astronomers Find Jupiter-Like Weather On Brown Dwarfs." ScienceDaily. www.sciencedaily.com/releases/2002/05/020524072411.htm (accessed September 2, 2014).

Share This




More Space & Time News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins