Featured Research

from universities, journals, and other organizations

Writing Nanopatterns With DNA Inks

Date:
June 7, 2002
Source:
Northwestern University
Summary:
Using an atomic force microscope tip as a pen and different single-stranded DNA as inks, scientists at Northwestern University have demonstrated a technique that could lead to the ultimate high-density gene chip because it takes gene chips to the limit of miniaturization — down to the scale of the DNA molecules themselves.

EVANSTON, Ill. — Using an atomic force microscope tip as a pen and different single-stranded DNA as inks, scientists at Northwestern University have demonstrated a technique that could lead to the ultimate high-density gene chip because it takes gene chips to the limit of miniaturization — down to the scale of the DNA molecules themselves.

Related Articles


This development, which uses the same tool to write patterns and read the results on the nanometer scale, could have an enormous impact on genomics and proteomics research.

Results of the DNA patterning on both gold and silicon oxide, which is important for electronic and optical materials applications, will be published in the June 7 issue of the journal Science.

"With this new tool, we can take a normal chip that’s made and sold today for studying a problem in genomics and miniaturize it to 1/100,000th of its size," said Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, who led the research team. "In a normal chip with 100,000 different spots of DNA, each spot is 20 to 40 micrometers in diameter. Using state-of-the-art dip-pen nanolithography we can prepare 100,000 DNA spots in the area occupied by a single spot in a conventional gene chip."

This technology, which can produce spots of DNA down to 50 nanometers in diameter, may make it possible to one day have a gene chip with an array of 100,000 different diagnostic tests in an area the size of the tip of a needle. In the future, it may take only a few seconds to make a gene chip, said Mirkin. And by putting in more information per unit area, smaller sample sizes would be required, reducing cost and time.

"Our direct-write patterning of multiple DNA strands also opens up new possibilities for building and studying nanoscale architectures," said Mirkin, also George B. Rathmann Professor of Chemistry. "By taking advantage of DNA as a type of biochemical Velcro, we should be able to build a circuit, a catalyst, a sensor or a transistor from the bottom up, instead of the top down.

"We want to build materials in a fundamentally new way, by taking advantage of the ability of DNA to self-assemble into a pre-programmable structure. If one uses the analogy of building a house, the deposited DNA is not only an architectural blueprint for a structure but also the construction worker which directs where each brick goes. Because single-stranded DNA molecules have a natural pre-programmed chemical match and attract complementary molecules, we can use them to control material and device fabrication."

The ability to use different strands of DNA adds to the chemical complexity of the structure, and researchers now can vary the size, shape and distance between DNA "spots." The features of size and shape can be controlled by a simple change in humidity and by controlling the path of the microscope’s tip.

The method of dip-pen nanolithography, invented and developed at Northwestern, allowed the researchers to use an atomic force microscope (AFM) tip as a nano-pen to write out a checkerboard pattern of spots of two different DNA strands on an oxidized silicon substrate. The surface between the spots was processed to prevent it from absorbing target DNA and disturbing the readings. When the array was exposed to a solution containing DNA complementary to the two types of spots (one complement attached to large gold nanoparticles and the other to small gold nanoparticles), the DNA selectively assembled on the correct spots. The researchers used the same AFM tip to image the results, which appeared as nanoscopic boulders of different heights.

Other authors on the paper are Linette Demers and David Ginger (lead authors), So-Jung Park, Zhi Li and Sung-Wook Chung, all at Northwestern. The research was supported by the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency and the National Science Foundation.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Writing Nanopatterns With DNA Inks." ScienceDaily. ScienceDaily, 7 June 2002. <www.sciencedaily.com/releases/2002/06/020607074122.htm>.
Northwestern University. (2002, June 7). Writing Nanopatterns With DNA Inks. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2002/06/020607074122.htm
Northwestern University. "Writing Nanopatterns With DNA Inks." ScienceDaily. www.sciencedaily.com/releases/2002/06/020607074122.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins