Featured Research

from universities, journals, and other organizations

Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics

Date:
June 13, 2002
Source:
National Science Foundation
Summary:
How small can electronic devices get? Nano-small! Two teams of scientists have fashioned transistors from single molecules, and report their results in the June 13 issue of Nature.

How small can electronic devices get? Nano-small! Two teams of scientists have fashioned transistors from single molecules, and report their results in the June 13 issue of Nature.

The ability to use individual molecules for electronics is a coveted breakthrough for science at the nanometer scale and for electronics industries because of the potential to shrink the size of components well beyond what is possible using conventional lithography techniques.

Transistors, traditionally made from silicon, regulate the transmission of electrons across barriers. The barrier height, and hence the electron flow, can be controlled by applying a small voltage to an electrode that acts as a gate. At the Cornell University Center for Materials Research, funded by the National Science Foundation (NSF), Paul McEuen, Dan Ralph, Hector Abruna and colleagues wedged a molecule containing a single cobalt atom between gold electrodes. They were able, using a gate voltage, to control the transfer of electrons across the cobalt atom, demonstrating the ability to regulate electrical flow at the smallest possible scale.

Hongkun Park and coworkers at Harvard University developed a transistor by inserting a different molecule containing two atoms of the metal vanadium between gold electrodes. The scientists were able to start and stop the flow of electrical current by adjusting the voltage near the bridging molecule, and observed magnetic interactions between electrons in the gold and the vanadium atom.

Park's research was supported by individual NSF grants and by the NSF Center for the Science of Nanoscale Systems and their Device Applications at Harvard. The di-vanadium molecule was developed by NSF grantee Jeffrey Long at the University of California at Berkeley.

By demonstrating the ability to control electron flow across one molecule and even a single atom, scientists have become optimistic about the ability to someday build the smallest possible electronic components. An important aspect of the research is developing the ability to conduct electrical measurements at the nanoscale; for example, to measure the electrical properties of single molecules. Both of the NSF-supported experiments demonstrated this ability.

For information on the materials center at Cornell, see: http://www.ccmr.cornell.edu/

For information on the nanoscience center at Harvard, see: http://www.nsec.harvard.edu/


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics." ScienceDaily. ScienceDaily, 13 June 2002. <www.sciencedaily.com/releases/2002/06/020613073522.htm>.
National Science Foundation. (2002, June 13). Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2002/06/020613073522.htm
National Science Foundation. "Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics." ScienceDaily. www.sciencedaily.com/releases/2002/06/020613073522.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins