Featured Research

from universities, journals, and other organizations

Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics

Date:
June 13, 2002
Source:
National Science Foundation
Summary:
How small can electronic devices get? Nano-small! Two teams of scientists have fashioned transistors from single molecules, and report their results in the June 13 issue of Nature.

How small can electronic devices get? Nano-small! Two teams of scientists have fashioned transistors from single molecules, and report their results in the June 13 issue of Nature.

The ability to use individual molecules for electronics is a coveted breakthrough for science at the nanometer scale and for electronics industries because of the potential to shrink the size of components well beyond what is possible using conventional lithography techniques.

Transistors, traditionally made from silicon, regulate the transmission of electrons across barriers. The barrier height, and hence the electron flow, can be controlled by applying a small voltage to an electrode that acts as a gate. At the Cornell University Center for Materials Research, funded by the National Science Foundation (NSF), Paul McEuen, Dan Ralph, Hector Abruna and colleagues wedged a molecule containing a single cobalt atom between gold electrodes. They were able, using a gate voltage, to control the transfer of electrons across the cobalt atom, demonstrating the ability to regulate electrical flow at the smallest possible scale.

Hongkun Park and coworkers at Harvard University developed a transistor by inserting a different molecule containing two atoms of the metal vanadium between gold electrodes. The scientists were able to start and stop the flow of electrical current by adjusting the voltage near the bridging molecule, and observed magnetic interactions between electrons in the gold and the vanadium atom.

Park's research was supported by individual NSF grants and by the NSF Center for the Science of Nanoscale Systems and their Device Applications at Harvard. The di-vanadium molecule was developed by NSF grantee Jeffrey Long at the University of California at Berkeley.

By demonstrating the ability to control electron flow across one molecule and even a single atom, scientists have become optimistic about the ability to someday build the smallest possible electronic components. An important aspect of the research is developing the ability to conduct electrical measurements at the nanoscale; for example, to measure the electrical properties of single molecules. Both of the NSF-supported experiments demonstrated this ability.

For information on the materials center at Cornell, see: http://www.ccmr.cornell.edu/

For information on the nanoscience center at Harvard, see: http://www.nsec.harvard.edu/


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics." ScienceDaily. ScienceDaily, 13 June 2002. <www.sciencedaily.com/releases/2002/06/020613073522.htm>.
National Science Foundation. (2002, June 13). Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2002/06/020613073522.htm
National Science Foundation. "Two Breakthroughs Achieved In Single-Molecule Transistor Research; Results Promise Advances In Nanoscale Electronics." ScienceDaily. www.sciencedaily.com/releases/2002/06/020613073522.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins