Featured Research

from universities, journals, and other organizations

Ultrafast Laser Spectroscopy Tracks Energy Flow Through Molecules

Date:
June 21, 2002
Source:
University Of Illinois At Urbana-Champaign
Summary:
Using an ultrafast laser spectroscopy technique, scientists at the University of Illinois at Urbana-Champaign have tracked – and timed – the flow of vibrational energy through certain molecules in their liquid state.

CHAMPAIGN, Ill. — Using an ultrafast laser spectroscopy technique, scientists at the University of Illinois at Urbana-Champaign have tracked – and timed – the flow of vibrational energy through certain molecules in their liquid state. "To understand chemistry at the most fundamental level, we have to understand the transfer of vibrational energy," said Dana Dlott, a professor of chemistry at Illinois. "Lots of scientists can put energy into a molecule and watch it drain away, but with our technique we can actually see where the energy goes."

Related Articles


The movement of vibrational energy within and between molecules plays a significant role in nearly all condensed-phase chemical processes. "Vibrational energy flow is a fundamental process in chemistry, and the one we know the least about," Dlott said. "Now that we have a tool that lets us watch where the energy goes, we can get a much better picture of what happens – at the most basic level – when molecules interact."

As will be reported in the June 21 issue of the journal Science, Dlott and postdoctoral research associates Zhaohui Wang and Andrei Pakoulev used pulses from a mid-infrared laser to excite the hydroxyl stretching vibrations in different alcohols. Then they probed the laser-pumped molecules with pulses of visible light to monitor the energy flow through intervening methylene groups and at the terminal methyl groups.

The researchers studied vibrational energy flow in ethanol, 1-propanol, 1-butanol and 2-propanol. "For each additional methylene group in the path between the hydroxyl and the terminal methyl group, the time for vibrational energy transfer was increased by about 400 femtoseconds," Dlott said.

The corresponding speed is a little faster than Mach 1, which is the speed of sound in air at sea level, but it is only about one-third the speed of sound in ethanol.

"The efficiency is low – only about 1 percent of the energy is going to the methyl groups," Dlott said. "This isn't like hitting the end of a metal bar with a hammer and having nearly all the vibrational energy move to the other end. In a molecule, there are many paths for the energy to follow. With our laser, we are tuned to only one location at a time, and we only measure the energy being transferred to that one location."

Although vibrational energy transfer through a molecule is reminiscent of electronic energy transfer, it is fundamentally quite different, Dlott said. "Electronic energy transfer typically involves through-space interactions. As our observations show, vibrational energy transfer is mechanical, and occurs via through-bond interactions."

To prove the energy is flowing through the alcohol molecules, rather than around them, Dlott and his colleagues took a look at another molecule, tert-butanol. They saw no energy transfer between the hydroxyl and the terminal methyl groups.

"In tert-butanol, the central carbon atom has no carbon-hydrogen stretching modes along the major axis of the molecule," Dlott said. "As a result, the through-bond energy transfer is choked off. Absolutely no vibrational energy gets through."

The researchers' findings provide an important new perspective on the mechanics of molecules and on through-bond energy transfer, and could lead to a better understanding of chemical processes in general.

"It's like seeing people leave a room, but you don't know whether they are going home or going someplace else," Dlott said. "With our advanced form of vibrational spectroscopy, we can see where the energy is going."

The National Science Foundation, the Air Force Office of Scientific Research and the Army Research Office supported this work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Ultrafast Laser Spectroscopy Tracks Energy Flow Through Molecules." ScienceDaily. ScienceDaily, 21 June 2002. <www.sciencedaily.com/releases/2002/06/020621081931.htm>.
University Of Illinois At Urbana-Champaign. (2002, June 21). Ultrafast Laser Spectroscopy Tracks Energy Flow Through Molecules. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2002/06/020621081931.htm
University Of Illinois At Urbana-Champaign. "Ultrafast Laser Spectroscopy Tracks Energy Flow Through Molecules." ScienceDaily. www.sciencedaily.com/releases/2002/06/020621081931.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins