Featured Research

from universities, journals, and other organizations

Stock Market Swings Help Researchers Understand Extreme Events In Solar Wind

Date:
July 26, 2002
Source:
University Of Warwick
Summary:
Astrophysicists at the University of Warwick have applied data analysis methods used to model stock market fluctuations, to explore changes in the solar wind (the sun's expanding atmosphere). They have discovered that the fluctuations in the solar wind follow the same kinds of patterns seen in the stock markets – particularly when it comes to the number of extreme events or large fluctuations.

Astrophysicists at the University of Warwick have applied data analysis methods used to model stock market fluctuations, to explore changes in the solar wind (the sun's expanding atmosphere). They have discovered that the fluctuations in the solar wind follow the same kinds of patterns seen in the stock markets – particularly when it comes to the number of extreme events or large fluctuations.

Related Articles


The researchers led by Professor Sandra Chapman at the University of Warwick, used "finite size scaling" to look at the probability of fluctuations or jumps in magnetic energy density in the solar wind, using data from the NASA-WIND spacecraft. They found that the solar wind fluctuations had a much higher probability of extreme events than for more familiar random processes (which follow a Gaussian or bell shaped curve). In fact statistically, the solar wind fluctuations are similar to those found previously for fluctuations in stock market indices. Large fluctuations in the solar wind affect our local 'space weather'. Predicting these is as challenging as predicting large changes in stock prices. As this work suggests that the underlying mathematics is similar we can apply knowledge from one area to understand the other.

The researchers also found that the magnetic energy density fluctuations were self-similar (in that the pattern of variations looked very similar at all time scales up to a period of 20 hours or so – in the same way that a fractal image tends to show very similar properties or patterns when you look at it on different scales). The team members are using their new analysis to modify current turbulence theories to produce more useful mathematical models of the occurrence of extreme events in the solar wind. The research team's first paper is entitled "B. Hnat, S.C. Chapman, G. Rowlands, N.W. Watkins and W. M. Farrell, Finite size in the solar wind magnetic field energy density as seen by WIND, Geophys. Res. Lett., 29, 86-1, (2002). The authors are from the University of Warwick, the British Antarctic Survey (BAS) and NASA Goddard Space Flight Center.

The University of Warwick analysis was supported at the Warwick end by the Particle Physics and Astronomy Research Council, and at BAS by the Natural Environment Research Council.


Story Source:

The above story is based on materials provided by University Of Warwick. Note: Materials may be edited for content and length.


Cite This Page:

University Of Warwick. "Stock Market Swings Help Researchers Understand Extreme Events In Solar Wind." ScienceDaily. ScienceDaily, 26 July 2002. <www.sciencedaily.com/releases/2002/07/020726081058.htm>.
University Of Warwick. (2002, July 26). Stock Market Swings Help Researchers Understand Extreme Events In Solar Wind. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2002/07/020726081058.htm
University Of Warwick. "Stock Market Swings Help Researchers Understand Extreme Events In Solar Wind." ScienceDaily. www.sciencedaily.com/releases/2002/07/020726081058.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Space & Time News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Universe Could Be Full Of Tatooine Sunsets

The Universe Could Be Full Of Tatooine Sunsets

Newsy (Mar. 30, 2015) University of Utah researchers say mathematical simulations show small, rocky planets, like Tatooine from "Star Wars," can form in dual-star systems. Video provided by Newsy
Powered by NewsLook.com
What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Raw: Astronauts Arrive at ISS for 1-Year Mission

Raw: Astronauts Arrive at ISS for 1-Year Mission

AP (Mar. 28, 2015) The capsule carrying a Russian and an American who are to spend a year away from Earth docked Saturday with the International Space Station. (March 28) Video provided by AP
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins