Featured Research

from universities, journals, and other organizations

New Alloy Could Improve Gas Mileage, Lower Emissions

Date:
August 1, 2002
Source:
NASA/Marshall Space Flight Center
Summary:
A new high-strength aluminum-silicon alloy developed at NASA's Marshall Space Flight Center, Huntsville, Ala., promises to lower engine emissions and could improve gas mileage in cars, boats and recreational vehicles. The new alloy, co-invented by Jonathan Lee, a NASA structural materials engineer, was originally developed for the automotive industry.

A new high-strength aluminum-silicon alloy developed at NASA's Marshall Space Flight Center, Huntsville, Ala., promises to lower engine emissions and could improve gas mileage in cars, boats and recreational vehicles. The new alloy, co-invented by Jonathan Lee, a NASA structural materials engineer, was originally developed for the automotive industry.

Although most Americans associate NASA with space flight, one of the space agency's missions is to share its cutting-edge technologies with U.S. industry. "Partnerships with U.S industries are the main way NASA transfers these technologies to the public," explains Vernotto McMillan, deputy manager of Marshall's Technology Transfer Department.

Lee and co-inventor PoShou Chen, a scientist with Morgan Research Corp., began work on the new alloy seven years ago when a major automobile manufacturer approached NASA about developing a strong and low-cost aluminum alloy for use in a piston redesign that would lower engine emissions.

Lee and Chen came up with MSFC-398, a wear-resistant alloy that exhibits dramatic strength at temperatures as high as 500 to 700 degrees Fahrenheit. In fact, when tested at 600 degrees Fahrenheit, it is three to four times stronger than conventional cast aluminum alloys. The new metal also can be produced at a projected cost of less than $1 per pound.

NASA High-Strength Alloy can be poured as a molten metal into conventional steel molds or die-casting molds to create specially shaped parts -- a cost-saving advantage over machining of parts.

"The new alloy is ideal for high-temperature cast components used in engines such as pistons, connecting rods, actuators, brake calipers and rotors," said Lee. This makes NASA High- Strength Alloy a good choice for high-temperature applications in the automotive, aerospace, marine and recreational vehicle industries.

"Increasingly stringent exhaust-emission regulations for internal combustion engines have forced piston designers into a redesign to lower emissions," said Lee. "The current modification is to reduce the piston's crevice volume -- the air gap between the piston wall and the cylinder bore -- by moving the top piston ring closer to the top of the piston crown."

Such a modification promises to be a key to reaching the goal of making today's high-performance gasoline and diesel engines meet tougher exhaust standards.

To accomplish this, engine makers needed a strong, low-cost alloy that would allow them to make the piston-crown depth thinner -- yet still curb piston failure caused by high work and heat loads.

"NASA High-Strength Alloy offers greater wear resistance and surface hardness which enables manufacturers to use less material, thus reducing the part's weight and cost and improving gas mileage, engine performance and engine durability," said Lee.

Two U.S. patents have been awarded with other domestic patents pending. An international patent is pending for the technology as well, said Sammy Nabors, the commercialization lead in the Marshall Technology Transfer Department. Through NASA's Technology Transfer program, non-exclusive licenses to develop new products from the improved alloy have been awarded to Advanced Materials Technology Inc., Manitowoc, Wis.; Swan Metal Composites Inc., Woodinville, Wash.; and Eck Industries, Manitowoc, Wis.

NASA is continuing to seek U.S. industries as partners to further transfer this technology to the public and private sector.


Story Source:

The above story is based on materials provided by NASA/Marshall Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Marshall Space Flight Center. "New Alloy Could Improve Gas Mileage, Lower Emissions." ScienceDaily. ScienceDaily, 1 August 2002. <www.sciencedaily.com/releases/2002/08/020801081009.htm>.
NASA/Marshall Space Flight Center. (2002, August 1). New Alloy Could Improve Gas Mileage, Lower Emissions. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2002/08/020801081009.htm
NASA/Marshall Space Flight Center. "New Alloy Could Improve Gas Mileage, Lower Emissions." ScienceDaily. www.sciencedaily.com/releases/2002/08/020801081009.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins