Featured Research

from universities, journals, and other organizations

Researchers Publish Latest Results In Continuing Search For Ancient Martian Life

Date:
August 7, 2002
Source:
NASA/Johnson Space Center
Summary:
In the latest study of a 4.5 billion-year-old Martian meteorite, researchers have presented new evidence confirming that 25 percent of the magnetic material in the meteorite was produced by ancient bacteria on Mars. These latest results were published in the journal Applied and Environmental Microbiology.

In the latest study of a 4.5 billion-year-old Martian meteorite, researchers have presented new evidence confirming that 25 percent of the magnetic material in the meteorite was produced by ancient bacteria on Mars. These latest results were published in the journal Applied and Environmental Microbiology.

The researchers used six physical properties they refer to as the Magnetite Assay for Biogenicity (MAB) to compare all the magnetic material found in the ancient meteorite -- using the MAB as a biosignature. A biosignature is a physical and/or chemical marker of life that does not occur through random processes or human intervention.

"No non-biologic magnetite population, whether produced by nature or in the laboratory, has ever met the MAB criteria," said Kathie Thomas-Keprta, an astrobiologist at NASA's Johnson Space Center (JSC) in Houston and the lead researcher on the study. "This means that one-quarter of the magnetite crystals embedded in the carbonates in Martian meteorite ALH84001 require the intervention of biology to explain their presence."

Magnetotactic bacteria, which occur in aquatic habitats on Earth, arrange magnetite crystals in chains within their cells to make compasses, which help the bacteria locate sources of food and energy. Magnetite (Fe3O4) is produced inorganically on Earth, but the magnetite crystals produced by magnetotactic bacteria are very different -- they are chemically pure and defect-free, with distinct sizes and shapes.

Four of the MAB biosignature properties relate to the external physical structure of the magnetite crystals, while another refers to their internal structure and another to their chemical composition.

In their earlier studies, the researchers found that approximately one-quarter of the nanometer-sized magnetite crystals in ALH84001 had remarkable physical and chemical similarities to magnetite particles produced by a bacteria strain on Earth called MV-1. This is the first time, however, that any researcher has used the full MAB range of biosignature properties to compare the proposed bacteria-produced crystals in Mars meteorite ALH84001with the bacteria-produced crystals from Earth and with the other magnetites in the meteorite.

The comparison between the proposed bacteria-produced crystals in the meteorite and crystals known to be produced by Earth-bacteria MV-1 is striking and provides strong evidence that these crystals were made by bacteria on Mars.

The fact that Mars Global Surveyor data suggest that early Mars had a magnetic field is consistent with a reason why Mars would have magnetotactic bacteria. "Our best working hypothesis is that early Mars supported the evolution of bacteria that share several traits with magnetotactic bacteria on Earth, most notably the MV-1 group," said Simon Clemett, a coauthor of the paper at Johnson.

Mars has long been understood to provide the sources of light and chemical energy sufficient to support life, but in 2001 the Mars Global Surveyor spacecraft observed magnetized stripes in the crust of Mars, which showed that a strong magnetic field existed in the planet's early history, about the same time as the carbonate containing the unique magnetites in ALH84001 was formed.

In June, researchers using the Mars Odyssey spacecraft announced that they had found water ice under the surface of Mars. These attributes, coupled with a carbon dioxide-rich atmosphere, would have provided the necessary environment for the evolution of microbes similar to the fossils found in ALH84001.

"We believe this latest study proves that the magnetites in ALH84001 can be best explained as the products of multiple biogenic and inorganic processes that operated on early Mars," Thomas-Keprta said.

An international team of nine researchers collaborated on the three-year study. The team, led by Thomas-Keprta of Lockheed Martin at Johnson Space Center, was funded by the NASA Astrobiology Institute. Co-authors of the study are Clemett and Susan Wentworth of Lockheed Martin at JSC; Dennis Bazylinski of Iowa State University (funded by the National Science Foundation); Joseph Kirschvink of the California Institute of Technology in Pasadena; David McKay and Everett Gibson of JSC; Hojatollah Vali of McGill University in Canada; and Christopher Romanek of the Savannah River Ecology Laboratory.

For a more technical discussion of this latest publication please visit the following Web site:

http://ares.jsc.nasa.gov/astrobiology/biomarkers/recentnews.html


Story Source:

The above story is based on materials provided by NASA/Johnson Space Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Johnson Space Center. "Researchers Publish Latest Results In Continuing Search For Ancient Martian Life." ScienceDaily. ScienceDaily, 7 August 2002. <www.sciencedaily.com/releases/2002/08/020807065947.htm>.
NASA/Johnson Space Center. (2002, August 7). Researchers Publish Latest Results In Continuing Search For Ancient Martian Life. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2002/08/020807065947.htm
NASA/Johnson Space Center. "Researchers Publish Latest Results In Continuing Search For Ancient Martian Life." ScienceDaily. www.sciencedaily.com/releases/2002/08/020807065947.htm (accessed October 2, 2014).

Share This



More Space & Time News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Astronomers Spot Largest, Brightest Solar Flare Ever

Astronomers Spot Largest, Brightest Solar Flare Ever

Newsy (Oct. 1, 2014) — The initial blast from the record-setting explosion would have appeared more than 10,000 times more powerful than any flare ever recorded. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins