Featured Research

from universities, journals, and other organizations

Harder Working Transistors Through Automated FPGA Compiling

Date:
February 25, 2003
Source:
University Of Southern California
Summary:
USC computer scientist Pedro Diniz presented his most recent benchmark in progress toward that goal at a computing conference in Northern California. "We are developing programming tools to automatically synthesize near-optimal chip architectures tuned for each application," he said, computing systems in which software is automatically optimized to flexible chips.

On Feb. 25, USC computer scientist Pedro Diniz presented his most recent benchmark in progress toward that goal at a computing conference in Northern California.

Related Articles


"We are developing programming tools to automatically synthesize near-optimal chip architectures tuned for each application," he said, computing systems in which software is automatically optimized to flexible chips.

Diniz, a research assistant professor at the USC School of Engineering's Information Sciences Institute, has been combining the abilities of a new computing platforms called Field Programmable Gate Arrays (FPGAs) with novel, sophisticated compiling techniques.

Diniz says that with these techniques FPGAs make much more effective use of the available transistors for very irregular applications that perform poorly on current processor architectures.

Specifically, in a presentation at the FPGA 2003 Conference in Monterey, California, Diniz and collaborator Joonseok Park described adapting standard software for a task called "simple spatial queries over spatial sparse-mesh and quad-tree data structures" for an FPGA using their techniques.

The result: their low-clockrate and elderly (3-year-old) FPGA platform matched the performance of a top of the line, new-generation workstation.

"This experience suggests that the integration in memory of FPGA-like fabrics for implementing smart memory engines should be performance-wise very advantageous," Diniz wrote.

Diniz believes that reconfigurable logic design techniques of the type he described at the conference promise to allow future generation of processors to use their power more efficiently.

"In today's processor designs transistor are locked-down for specific functions. Using reconfigurable techniques one can envision future processor architecture to morph into distinct topologies, suitable for each application at hand," Diniz said.

While transistors are cheap, he noted, power consumption and usage is increasingly an issue, particularly for portable devices.

The promise of FPGAs has been slow to materialize because of the lack of software tools that facilitate the mapping and synthesis of custom architectures, according to Diniz. "So, creation of such software tools is what we have been working toward,"

Diniz is working with ISI researcher Mary Hall on programming next-generation of FPGAs, so-called "System on a Chip" devices with still more flexibility and potential power.

One such system has actually been realized by an ISI team including Hall and Diniz. That chip, a "Processor in Memory" chip called DIVA, is now being investigated under a grant from DARPA for integration into a HP system.

"The advantages of such architecture depend upon being able to use established applications without drastic re-engineering," says Diniz. "We believe our experience so far shows this will be possible."

Diniz and Park's research on the FPGA project presented at FPGA 2003 was financed by DARPA. NSF has approved a grant for a new project, called SLATE that will carry this work forward.


Story Source:

The above story is based on materials provided by University Of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University Of Southern California. "Harder Working Transistors Through Automated FPGA Compiling." ScienceDaily. ScienceDaily, 25 February 2003. <www.sciencedaily.com/releases/2003/02/030225070139.htm>.
University Of Southern California. (2003, February 25). Harder Working Transistors Through Automated FPGA Compiling. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/2003/02/030225070139.htm
University Of Southern California. "Harder Working Transistors Through Automated FPGA Compiling." ScienceDaily. www.sciencedaily.com/releases/2003/02/030225070139.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Facebook Ups Its Messenger Game

Facebook Ups Its Messenger Game

Reuters - Business Video Online (Mar. 25, 2015) Facebook is taking another step towards making its users into consumers for its growing base of advertisers, by expanding its messenger service features. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins