Featured Research

from universities, journals, and other organizations

Researchers Identify Brain Protein That Halts Progression Of Alzheimer’s

Date:
October 25, 2004
Source:
NIH/National Institute Of Environmental Health Sciences
Summary:
Researchers have identified a protein in the brain that halts the progression of Alzheimer’s disease in human brain tissue. The protein, known as “transthyretin,” protects brain cells from gradual deterioration by blocking another toxic protein that contributes to the disease process.

Researchers have identified a protein in the brain that halts the progression of Alzheimer’s disease in human brain tissue. The protein, known as “transthyretin,” protects brain cells from gradual deterioration by blocking another toxic protein that contributes to the disease process.

The National Institute of Environmental Health Sciences, a component of the National Institutes of Health, provided $1.25 million to University of Wisconsin-Madison scientists for the transthyretin study. The scientists will present their findings October 26 at the 34th annual meeting of the Society for Neuroscience in San Diego, Calif.

“The results of this study are promising,” said Kenneth Olden, Ph.D., director of the NIEHS. “More studies are needed to understand how transthyretin can be used in treating Alzheimer’s patients.”

Alzheimer’s disease progresses when a toxic protein, known as “beta-amyloid,” attacks the brain’s nerve cells involved in learning and memory. The beta-amyloid creates sticky plaques and tangles that gradually disable nerve cells, producing memory loss. Transthyretin appears to protect brain cells by intercepting the beta-amyloid and preventing it from interacting with the brain tissue.

“Based on the results of animal studies, we know that the disease process depends in large part on the delicate balance between the ‘good’ transthyretin protein and the ‘bad’ beta-amyloid protein,” says Dr. Jeff Johnson, associate professor at the University of Wisconsin’s School of Pharmacy and lead author on the study. “In Alzheimer’s patients, the ‘bad’ proteins significantly outnumber the ‘good’ proteins.”

Johnson discovered the effect of transthyretin while studying mice genetically engineered with defective genes taken from human patients with early-onset Alzheimer’s disease. As expected, the defective genes produced mice with higher-than-normal levels of the toxic beta-amyloid protein. These mice did not, however, exhibit symptoms of Alzheimer’s disease.

“We have a mouse whose brain is bathing in toxic beta-amyloid without exhibiting disease symptoms,” says Johnson. “We were all asking the same question – Why aren’t these nerve cells dying?”

Dr. Thor Stein, a researcher in Johnson’s laboratory and first author of the study, then analyzed the brains of mice and noticed that the levels of transthyretin had increased dramatically. When Stein treated the mouse brain with an antibody that prevented transthyretin from reacting with the beta-amyloid protein, the mice showed brain cell death.

“We concluded that the transthyretin must have protected the brain cells from the toxic effects of the beta-amyloid,” says Johnson.

Test tube studies with cultured brain cells from human cortex support the findings. When Stein treated human brain cells with the transthyretin protein, then exposed the cells to the toxic beta-amyloid, the brain cell death was minimal. “Now that we have demonstrated that this protective mechanism is relevant to humans, we can start to identify strategies to slow nerve degeneration in Alzheimer’s patients,” says Johnson.

According to Johnson, this would involve developing drugs that would boost the transthyretin within the brain or methods depositing transthyretin into the brain. “Hopefully this research will inspire a new approach to the treatment of Alzheimer’s, one focused on preventing the loss of the brain cells instead of treating the resulting symptoms.”

Johnson foresees a time when family members with a genetic predisposition to Alzheimer's disease could take a yet-undeveloped drug to increase transthyretin protein and prevent the disease from developing. Theoretically, the drug also could be given in the early stages of Alzheimer’s to stop progression of the disease, preserving a higher level of cognitive function in patients.

The transthyretin discovery will likely impact the screening of environmental chemicals for their potential role in causing or exacerbating Alzheimer’s disease. “Researchers could develop tests that determine whether a particular chemical or agent in the environment is able to shift the delicate balance between the ‘good’ and ‘bad’ proteins,” notes Johnson. “This would allow scientists to establish definitive links between environmental exposures and Alzheimer’s disease pathology.”


Story Source:

The above story is based on materials provided by NIH/National Institute Of Environmental Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Environmental Health Sciences. "Researchers Identify Brain Protein That Halts Progression Of Alzheimer’s." ScienceDaily. ScienceDaily, 25 October 2004. <www.sciencedaily.com/releases/2004/10/041025131754.htm>.
NIH/National Institute Of Environmental Health Sciences. (2004, October 25). Researchers Identify Brain Protein That Halts Progression Of Alzheimer’s. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2004/10/041025131754.htm
NIH/National Institute Of Environmental Health Sciences. "Researchers Identify Brain Protein That Halts Progression Of Alzheimer’s." ScienceDaily. www.sciencedaily.com/releases/2004/10/041025131754.htm (accessed August 28, 2014).

Share This




More Mind & Brain News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins