Featured Research

from universities, journals, and other organizations

Math Optimizes Kidney Matches

Date:
June 8, 2005
Source:
Massachusetts Institute Of Technology
Summary:
Many more people could get kidney transplants thanks to new mathematical techniques designed to optimize a novel matching program at the national level, according to MIT graduate student Sommer Gentry and her husband, a transplant surgeon at Johns Hopkins.

MIT doctoral student Sommer Gentry and her husband, surgeon Dorry Segev, are working to improve the system of matching kidney donors with recipients.
Credit: Photo : Dorry Segev

Many more people could get kidney transplants thanks to new mathematical techniques designed to optimize a novel matching program at the national level, according to MIT graduate student Sommer Gentry and her husband, a transplant surgeon at Johns Hopkins.

More than 60,000 patients are awaiting kidney transplants in the United States. About one-third of patients with willing live donors will be excluded from the surgery because of blood type and other incompatibilities.

Gentry, who will receive the Ph.D. from MIT this month in electrical engineering and computer science, her husband, Dr. Dorry Segev, and Johns Hopkins colleagues have demonstrated that a national matching program for kidney paired donation, or KPD, would ensure the best possible kidney for the greatest number of recipients who have incompatible donors. Currently KPD is practiced only on a local or regional level.

Key to the work is a new algorithm they developed to optimize the selection process. The work was reported in the Journal of the American Medical Association.

KPD provides organs to patients who have a willing, designated donor who is not compatible. A kidney from such a donor is matched to--and transplanted into--the recipient of a second incompatible donor-patient pair and vice versa. The transplants are performed simultaneously.

"Our findings demonstrate that a national pool of kidney donors and recipients, combined with new mathematical techniques for sorting through them to find the best possible organ matches, will not only allow more people to get the transplants they need, but will dramatically cut health-care costs, reduce disruptive and unnecessary travel for patients, and ensure that transplanted kidneys have the best possible chance of survival," said Segev, lead author of the paper.

"Even if only 7 percent of patients awaiting kidney transplantation participated in an optimized national KPD program, the health-care system could save as much as $750 million," he said.

The team's new algorithm for making the most--and best--KPD matches is based on a technology called optimization. Optimization, a part of Gentry's thesis work, has already proved successful in facilitating such tasks as airline scheduling and online driving directions.

"Dorry came to me with just a description of the problem and a notion that there must be an optimization procedure in it somewhere," Gentry said.

The team then tested the new algorithm against the algorithm currently used to match KPD patients. After applying each to simulated pools of incompatible donor/recipient pairs, they found that a national KPD program using the new algorithm would indeed result in more transplants, better matches and more transplanted kidneys surviving at five years.

The researchers have developed an interactive web site, www.OptimizedMatch.com, that provides more details and interactive demonstrations of the algorithm and its use in transplantation.

The research was funded by the American Society of Transplant Surgeons and a Computational Science Graduate Fellowship to Gentry from the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "Math Optimizes Kidney Matches." ScienceDaily. ScienceDaily, 8 June 2005. <www.sciencedaily.com/releases/2005/06/050608054631.htm>.
Massachusetts Institute Of Technology. (2005, June 8). Math Optimizes Kidney Matches. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2005/06/050608054631.htm
Massachusetts Institute Of Technology. "Math Optimizes Kidney Matches." ScienceDaily. www.sciencedaily.com/releases/2005/06/050608054631.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins