Featured Research

from universities, journals, and other organizations

Scientists Use X-rays To Measure How Deep 'Deep Impact' Was

Date:
July 11, 2005
Source:
Penn State
Summary:
Scientists studying the Deep Impact collision using NASA's Swift satellite report that preliminary analyses of X-ray emissions indicate several tens of thousands of tons of material were released.

Image of Comet Tempel 1 taken on 29 June 2005 using the Swift Ultraviolet/Optical Telescope (UVOT) through an ultraviolet filter centered on 2600 Angstroms. The image has been compensated for the motion of the comet on the sky, so its background stars appear as streaks on the sky instead of as points.
Credit: Image courtesy of Penn State

Here come the X-rays, on cue. Scientists studying the Deep Impact collision using NASA's Swift satellite report that comet Tempel 1 is getting brighter and brighter in X-ray light with each passing day.

The X-rays provide a direct measurement of how much material was kicked up in the impact. This is because the X-rays are created by the newly liberated material lifted into the comet's thin atmosphere and illuminated by the high-energy solar wind from the Sun. The more material liberated, the more X-rays are produced.

Swift data of the water evaporation on comet Tempel 1 also may provide new insights into how solar wind can strip water from planets such as Mars.

"Prior to its rendezvous with the Deep Impact probe, the comet was a rather dim X-ray source," said Dr. Paul O'Brien of the Swift team at the University of Leicester. "How things change when you ram a comet with a copper probe traveling over 20,000 miles per hour. Most of the X-ray light we detect now is generated by debris created by the collision. We can get a solid measurement of the amount of material released."

"It takes several days after an impact for surface and sub-surface material to reach the comet's upper atmosphere, or coma," said Dr. Dick Willingale, also of the University of Leicester. "We expect the X-ray production to peak this weekend. Then we will be able to assess how much comet material was released from the impact."

Based on preliminary X-ray analysis, O'Brien estimates that several tens of thousands of tons of material were released, enough to bury Penn State's football field under 30 feet of comet dust. Observations and analysis are ongoing at the Swift Mission Operations Center at Penn State University as well as in Italy and the United Kingdom.

Swift is providing the only simultaneous multi-wavelength observation of this rare event, with a suite of instruments capable of detecting visible light, ultraviolet light, X-rays, and gamma rays. Different wavelengths reveal different secrets about the comet.

The Swift team hopes to compare the satellite's ultraviolet data, collected hours after the collision, with the X-ray data. The ultraviolet light was created by material entering into the lower region of the comet's atmosphere; the X-rays come from the upper regions. Swift is a nearly ideal observatory for making these comet studies, as it combines both a rapidly responsive scheduling system with both X-ray and optical/UV instruments in the same satellite.

"For the first time, we can see how material liberated from a comet's surface migrates to the upper reaches of its atmosphere," said Prof. John Nousek, Director of Mission Operations at Penn State. "This will provide fascinating information about a comet's atmosphere and how it interacts with the solar wind. This is all virgin territory."

Nousek said Deep Impact's collision with comet Tempel 1 is like a controlled laboratory experiment of the type of slow evaporation process from solar wind that took place on Mars. The Earth has a magnetic field that shields us from solar wind, a particle wind composed mostly of protons and electrons moving at nearly light speed. Mars lost its magnetic field billions of years ago, and the solar wind stripped the planet of water.

Comets, like Mars and Venus, have no magnetic fields. Comets become visible largely because ice is evaporated from their surface with each close passage around the Sun. Water is dissociated into its component atoms by the bright sunlight and swept away by the fast-moving and energetic solar wind. Scientists hope to learn about this evaporation process on Tempel 1 now occurring quickly -- over the course of a few weeks instead of a billion years -- as the result of a planned, human intervention.

Swift's "day job" is detecting distant, natural explosions called gamma-ray bursts and creating a map of X-ray sources in the universe. Swift's extraordinary speed and agility enable scientists to follow Tempel 1 day by day to see the full effect from the Deep Impact collision.

For the latest news on Swift analysis of comet Tempel 1, refer to:
http://www.science.psu.edu/alert/Swift-Deep-Impact.htm
http://swift.gsfc.nasa.gov
and
http://swift.sonoma.edu/

The Deep Impact mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, California. Swift is a medium-class NASA explorer mission in partnership with the Italian Space Agency and the Particle Physics and Astronomy Research Council in the United Kingdom, and is managed by NASA Goddard. Penn State controls science and flight operations from the Mission Operations Center in University Park, Pennsylvania. The spacecraft was built in collaboration with national laboratories, universities and international partners, including Penn State University; Los Alamos National Laboratory, New Mexico; Sonoma State University, Rohnert Park, Calif.; Mullard Space Science Laboratory in Dorking, Surrey, England; the University of Leicester, England; Brera Observatory in Milan; and ASI Science Data Center in Frascati, Italy.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Scientists Use X-rays To Measure How Deep 'Deep Impact' Was." ScienceDaily. ScienceDaily, 11 July 2005. <www.sciencedaily.com/releases/2005/07/050711013424.htm>.
Penn State. (2005, July 11). Scientists Use X-rays To Measure How Deep 'Deep Impact' Was. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/07/050711013424.htm
Penn State. "Scientists Use X-rays To Measure How Deep 'Deep Impact' Was." ScienceDaily. www.sciencedaily.com/releases/2005/07/050711013424.htm (accessed October 1, 2014).

Share This



More Space & Time News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) — Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins