Featured Research

from universities, journals, and other organizations

Tandem Ions May Lead The Way To Better Atomic Clocks

Date:
August 14, 2005
Source:
National Institute Of Standards And Technology
Summary:
Physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have used the natural oscillations of two different types of charged atoms, or ions, confined together in a single trap, to produce the “ticks” that may power a future atomic clock.

NIST researchers trapped aluminum and beryllium ions in the device above in experiments designed to produce an atomic clock that could be significantly more precise than today’s most accurate atomic clocks.
Credit: Image courtesy of National Institute Of Standards And Technology

BOULDER, Colo. — Physicists at the Commerce Department’s NationalInstitute of Standards and Technology (NIST) have used the naturaloscillations of two different types of charged atoms, or ions, confinedtogether in a single trap, to produce the “ticks” that may power afuture atomic clock.

As reported in the July 29 issue of Science,* the unusual tandemtechnique involves use of a single beryllium ion to accurately sensethe higher-frequency vibrations of a single aluminum ion. The NISTgroup used ultraviolet lasers to transfer energy from the aluminum’svibrations to a shared “rocking” motion of the pair of ions, and thendetected the magnitude of the vibrations through the beryllium ion. Thenew technique solves a long-standing problem of how to monitor theproperties of an aluminum ion, which cannot be manipulated easily usingstandard laser techniques.

The tandem approach might be used to make an atomic clock based onoptical frequencies, which has the potential to be more accurate thantoday’s microwave-based atomic clocks. It may also allow simplifieddesigns for quantum computers, a potentially very powerful technologyusing the quantum properties of matter and light to represent 1s and 0s.

“Our experiments show that we can transfer information back andforth efficiently between different kinds of atoms. Now we are applyingthis technique to develop accurate optical clocks based on singleions,” said Till Rosenband of NIST’s laboratories in Boulder, Colo.

Today’s international time and frequency standards measure naturallyoccurring oscillations of cesium atoms that fall within the frequencyrange of microwaves, about 9 billion cycles per second. By contrast,optical frequencies are about 100,000 times higher, or about onequadrillion cycles per second, thus dividing time into smaller units.Aluminum may offer advantages over other atoms, such as mercury, beingconsidered for optical atomic clocks.

Building a clock based on aluminum ions has been impractical untilnow because this atom fails to meet three of four requirements. It doesoscillate between two different energy states at a stable, opticalfrequency that can be used as a clock reference. However, aluminumcannot be cooled with existing lasers, and its quantum state isdifficult to prepare and detect directly. The Science paper describeshow beryllium—a staple of NIST research on time and frequency standardsas well as quantum computing—can fulfill these three requirements whilethe aluminum acts as a clock.

In the NIST experiments, the two ions were confined close togetherin an electromagnetic trap. The beryllium ion was laser cooled andslowed to almost absolute zero temperature, which helped to cool theadjacent aluminum ion. Then the scientists used a different laser toplace the aluminum ion in a special quantum state called a“superposition,” in which, due to the unusual rules of quantum physics,the ion is in both of its clock-related energy levels at once. Morelaser pulses were used to convert this clock state into a rockingmotion, which—because of the physical proximity of the two ions and theinteraction of their electrical charges—was shared by the berylliumion. As the two ions rocked together in a coordinated fashion,scientists applied two additional laser beams to convert this motioninto a change in energy level of the beryllium ion, which was thendetected.

When the information is transferred between the two ions, they arebriefly “entangled,” another unusual phenomenon of quantum physics inwhich the properties of physically distinct particles are correlated. Alogic operation borrowed from quantum computing was used to transferthe aluminum’s quantum state to the beryllium. Logic operations aresimilar to “if/then” statements in which the outcome depends on theinitial state. For instance, if the aluminum’s original state was atthe lowest energy level, then no information was transferred. But ifthe original state was at a higher level, then energy was transferredto the beryllium in a proportional amount.

By repeating the experiment many times, with different laserfrequencies creating a variety of superposition states in the aluminum,scientists could determine its “resonant” or characteristic frequencyextremely accurately. This is the frequency of an internal vibration ofthe aluminum atom, which can be used as the “ticks” of an atomic clock.

The tandem technique could be used to investigate the potential ofvarious atoms, such as boron and helium, for use in optical atomicclocks, according to the paper. The technique also could be used inquantum computing experiments to distribute information betweendifferent types of ions or atoms. Because different atoms respond todifferent frequencies of light, this could improve control of ions oratoms within a potential future quantum computer. Information aboutNIST research in this field is available at http://qubit.nist.gov.

The work described in Science was supported in part by the Office ofNaval Research and the Advanced Research and DevelopmentActivity/National Security Agency.

As a non-regulatory agency, NIST develops and promotes measurement,standards and technology to enhance productivity, facilitate trade andimprove the quality of life.

###

*P.O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist ,D.J. Wineland. Spectroscopy using quantum logic. Science. July 29, 2005.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Tandem Ions May Lead The Way To Better Atomic Clocks." ScienceDaily. ScienceDaily, 14 August 2005. <www.sciencedaily.com/releases/2005/08/050811090054.htm>.
National Institute Of Standards And Technology. (2005, August 14). Tandem Ions May Lead The Way To Better Atomic Clocks. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2005/08/050811090054.htm
National Institute Of Standards And Technology. "Tandem Ions May Lead The Way To Better Atomic Clocks." ScienceDaily. www.sciencedaily.com/releases/2005/08/050811090054.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins