Featured Research

from universities, journals, and other organizations

Researchers Find Multiple Proteins That Stick To Medical Devices

Date:
October 6, 2005
Source:
Washington University in St. Louis
Summary:
Biomedical engineers at Washington University in St. Louis have found a new role for the blood protein serum amyloid P in the body's response to medical materials, which may help to explain a variety of problems associated with heart-lung bypass, hemodialysis and the use of artificial vascular grafts.

Donald Elbert (right) working with his graduate student Evan Scott at the optical waveguide light spectroscope to observe proteins sticking to a polymer surface in their Whitaker Building laboratory.
Credit: Photo by David Kilper / WUSTL Photo

Related Articles


Using atechnique called proteomics, the researchers identified many of theblood proteins that stick (adsorb) to the surfaces of medical devices.Blood proteins that adsorb to the surfaces of materials unfold and canbe recognized by the body, which then mounts a response against thedevice. The body's response to adsorbed proteins contributes to avariety of problems, including the formation of small clots that mayclose off small diameter vascular grafts or break away to end up in thelungs, kidney or brain.

Previously, the study of blood proteinson the surfaces of medical devices has been limited by the large numberof unique proteins in the blood -- greater than 150 -- as well as theextremely small amounts of proteins adsorbed on the materials. Forexample, the amount of protein that might adsorb to one side of aquarter is about a millionth of a gram.

Donald Elbert, Ph.D.,Washington University assistant professor of biomedical engineering,used advanced protein separations and mass spectrometry to track theproteins on the surfaces of various polymers used in medical devices.The analysis techniques, collectively called 'proteomics,' are mostoften used to study protein expression in cells.

"The techniquesare extremely sensitive and are really well-suited to studying proteinson surfaces," said Elbert. "Using these techniques, we can in principleidentify a protein given only a billionth of a gram of the protein,even if the protein were mixed with many other types of proteins."

Elbertand his colleagues Jinku Kim and Evan Scott were able to follow theadsorption of multiple blood proteins on the surface of a biomaterialover time.

"Traditionally, most studies were limited to the 'big three' proteins in blood - albumin, fibrinogen and IgG", Elbert said.

The results were published in the Oct. 1, 2005 issue of the Journal of Biomedical Materials Research.

New role for serum amyloid P

Bycasting a wider net, they found one particular protein on the materialsin large amounts, serum amyloid P. Serum amyloid P is very similar instructure to C-reactive protein, a well-known marker for cardiovasculardisease. Normally, serum amyloid P is involved in the clearance of DNAthat is released from dying cells, protecting the individual fromauto-immune disorders.

"No one had ever observed serum amyloid Pon biomedical materials before, because, unless you were specificallylooking for them, the technology wasn't around to easily identifyproteins present in such small amounts," Elbert said. "No one,including us, had ever posed the hypothesis that this protein might beimportant in the biocompatibility of materials. Our results show theimportance of large-scale techniques that emphasize discovery of newknowledge, rather than just hypothesis-testing."

The WashingtonUniversity researchers also found that leukocytes -- white blood cells-- adhered to the serum amyloid P after it adsorbed to surface.Leukocyte adhesion and activation on biomaterials is an important partof the body's response to medical devices. For example, large numbersof activated leukocytes are found stuck to heart-lung bypass machines,and these cells can activate blood clotting. This in turn maycontribute to neurocognitive impairment following the use of thesedevices, possibly due to small clots that break away from the device.

"It'sreally exciting that even after over 60 years of research in the area,there is more to learn about how blood interacts with materials,"Elbert said.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "Researchers Find Multiple Proteins That Stick To Medical Devices." ScienceDaily. ScienceDaily, 6 October 2005. <www.sciencedaily.com/releases/2005/10/051006083856.htm>.
Washington University in St. Louis. (2005, October 6). Researchers Find Multiple Proteins That Stick To Medical Devices. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2005/10/051006083856.htm
Washington University in St. Louis. "Researchers Find Multiple Proteins That Stick To Medical Devices." ScienceDaily. www.sciencedaily.com/releases/2005/10/051006083856.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins