Featured Research

from universities, journals, and other organizations

For A Bigger Computer Hard-drive, Just Add Water

Date:
May 11, 2006
Source:
Drexel University
Summary:
Imagine having computer memory so dense that a cubic centimeter contains 12.8 million gigabytes (GB) of information. Ferroelectric materials possess spontaneous and reversible electric dipole moments. Until recently, it was a technological challenge to stabilize ferroelectricity on the nano-scale. This was because the traditional process of screening the charges was not completely effective.

Imagine having computer memory so dense that a cubic centimeter contains 12.8 million gigabytes (GB) of information.

Imagine an iPod playing music for 100 millennia without repeating a single song or a USB thumb-drive with room for 32.6 million full-length DVD movies.

Now imagine if this could be achieved by combining a computing principle that was popular in the 1960s, a glass of water and wire three-billionths of a meter wide. Science fiction? Not exactly.

Ferroelectric materials possess spontaneous and reversible electric dipole moments. Until recently, it was a technological challenge to stabilize ferroelectricity on the nano-scale. This was because the traditional process of screening the charges was not completely effective. However Dr. Jonathan Spanier from Drexel University and his research colleagues and the University of Pennsylvania have proposed a new and slightly unusual mechanism stabilizing the ferroelectricity in nano-scaled materials:surrounding the charged material with fragments of water.

Until recently, it was difficult to miniaturize ferroelectric materials because of problems with screening.

All ferroelectric materials, even Spanier's wires that are 100,000 times finer than a human hair, need to be screened to ensure their dipole moments remain stable. Traditionally this was accomplished using metallic electrodes, but Spanier and his team found that molecules such as hydroxyl(OH) ions, which make up water, and organic molecules, such as carboxyl (COOH), work even better than metal electrodes at stabilizing ferroelectricity in nano-scaled materials, proving that sometimes water and electricity do mix.

"It is astonishing to see that molecules enable a wire having a diameter equivalent to fewer than ten atoms to act as a stable and switchable dipole memory element," said Spanier, an assistant professor of materials science and engineering at Drexel.

If commercialized, ferroelectric memory of this sort could find its way into home computers, rendering traditional hard-drives obsolete. The extreme capacity offered by such a device could easily put a room full of hard-drives and servers into a jacket pocket, but this idea can be applied to other computer components, such as ferroelectric RAM.

RAM is necessary in a computer because it stores information for programs that are currently running. As this news release was written, RAM stored the words in a file. Because RAM can transfer files faster than a hard-drive, it is used to handle running programs. However most RAM is volatile, and if the computer loses power all the information in RAM is lost. This is not the case with ferroelectric memory.

Ferroelectric memory is non-volatile, so it is entirely possible for files to be stored permanently in a computer's RAM. Applying nano-wires and the new stabilization method to existing ferroelectric RAM would deal a double blow to hard-drives in size and speed.

Spanier and his colleagues, Alexie Kolpak and Andrew Rappe offrom the University of Pennsylvania and Hongkun Park of Harvard University, are excited about their findings, but say significant challenges lie ahead, including the need to develop ways to assemble the nanowires densely, and to develop a scheme to efficiently write information to and read information from the nanowires. In the interim, Spanier and his colleagues will continue to investigate the role of molecules on ferroelectricity in nanowires and to develop nano-scaled devices that exploit this new-found mechanism.

Support for the research at Drexel is from the Army Research Office and at Harvard and at Penn from the National Science Foundation, the Packard Foundation, the Dreyfus Foundation, the Office of Naval Research, and the Center for Piezoelectric Design.


Story Source:

The above story is based on materials provided by Drexel University. Note: Materials may be edited for content and length.


Cite This Page:

Drexel University. "For A Bigger Computer Hard-drive, Just Add Water." ScienceDaily. ScienceDaily, 11 May 2006. <www.sciencedaily.com/releases/2006/05/060510233013.htm>.
Drexel University. (2006, May 11). For A Bigger Computer Hard-drive, Just Add Water. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2006/05/060510233013.htm
Drexel University. "For A Bigger Computer Hard-drive, Just Add Water." ScienceDaily. www.sciencedaily.com/releases/2006/05/060510233013.htm (accessed April 20, 2014).

Share This



More Computers & Math News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

AFP (Apr. 19, 2014) The Nintendo Game Boy celebrates its 25th anniversary Monday and game expert Stephen Upstone says the console can be credited with creating a trend towards handheld gaming devices. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Nearly Two Weeks On, The Internet Copes With Heartbleed

Nearly Two Weeks On, The Internet Copes With Heartbleed

Newsy (Apr. 19, 2014) The Internet is taking important steps in patching the vulnerabilities Heartbleed highlighted, but those preventive measures carry their own costs. Video provided by Newsy
Powered by NewsLook.com
Facebook To Share Nearby Friends Data With Advertisers

Facebook To Share Nearby Friends Data With Advertisers

Newsy (Apr. 19, 2014) A Facebook spokesperson has confirmed the company will use GPS data from the new Nearby Friends feature for advertising sometime in the future. Video provided by Newsy
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins