Featured Research

from universities, journals, and other organizations

System Pulls Answers From Online Conversations By Identifying The Alpha Chatterers

Date:
June 7, 2006
Source:
University of Southern California
Summary:
Aimed at creating a system to automatically produce reports and summaries of meetings, the study is one of the first quantitative efforts in the field of natural language processing to use the structure of online conversations to sift information. The method also may soon enable Internet online community members to get a statistical measurement of their influence in their virtual rooms.

The ISI study characterized online posts according a schema of speech acts. While some speech-act characterization was done by hand in this study to test the results, the ISI group has already developed effective software to accomplish the task automatically.
Credit: USC Information Sciences Institute

A USC Information Sciences Institute system pulls answers from online conversations by identifying the alpha chatterers.

Related Articles


The system, to be presented at a conference on human language technology on June 6, was developed to analyze technical conversations in which an objectively correct answer exists. But the method for statistically characterizing response by the group to individuals is generalizable.

Online communities are now firmly established in domains ranging from high school gossip to professional open-source software design discussions, generating huge repositories of records of human knowledge processing, pre-converted to digital form.

"For study of online natural language interaction, it's the mother lode," says Eduard Hovy of the University of Southern California Information Sciences Institute.

Such sites provide raw material for a new method that may, among other things, enable Internet chat room users to get a statistical measurement of their influence in their room.

This research is one of the first quantitative studies in the field of natural language processing that takes account of the fact that chat conversations are structured interactions among a large number of people.

In the long term, research in this area will lead to the development of systems that can automatically produce reports and summaries of meetings, researchers hope.

It's easy to simply harvest factoids from text, said Hovy (left), who holds an appointment as research associate professor in the USC Viterbi School of Engineering department of computer science in addition to his post as deputy director of the ISI Intelligent Systems Division and director of the ISI Natural Language Group.

But the fact that human conversation has an inherent structure, including temporal ordering, references to previous statements, labeled sourcing and other clues opens the door to much deeper machine-generated understanding.

To make use of the structure, the team used a graph-based algorithm called HITS (Hypertext Induced Topic Selection) originally used by Cornell computer scientist Joel Kleinberg to rank and classify web pages by their connections to each other.

In the study, connections between conversation participants replace the web links for the HITS analysis.

The interactions used in the study were threaded discussions from three semesters of a USC undergraduate course in computer science, including 2214 messages in 640 threads, all discussing class material and posing questions about problems.

The goal was to extract from the conversation the best answer to the questions discussed. And, according to the paper, the system works -- not perfectly, but much better than one that selects answers at random. Random selection got the answer (as determined by human inspection) right 87 out of 314 times, where the best implementation of the HITS system was correct 221 times.

The ISI implementation of HITS integrates three separate elements--speech act analysis, lexical similarity, and poster trustworthiness--to create links for interpretation for individual conversation participants.

Speech act analysis classifies the statements in the record according to what they do in the context of the discussion, assigning each to one of thirteen kinds of acts, grouped in three categories: inform, request, social-interaction.

The "inform" speech act category includes corrections, descriptions, elaborations, suggestions, and answers to questions, both simple and complex. "Requests" include not just requests for information but also for action, namely commands. "Social" speech acts include acknowledgements, thanks, compliments, criticisms, objections, and supportive statements.

Lexical analysis looks for similarities in the vocabulary of responses to see which are related to each other. From this the system can determine the threads of the conversation, and decide when new subtopics are split off.

Finally, poster trustworthiness measures the degree to which participants accept statements made by each individual. This is determined by scoring responses to a given person's posts as either negative or positive. Over time, people whose statements are more positively viewed become more central and more trusted in the online community.

To test the method, part of the data (the classification of the speech acts) was initially human coded. After it was trained, the machine system was then applied to the same data, and its performance was compared to that of the human coder. It achieved accuracy of between 65% and 70% -- a figure that is likely to improve.

How soon will it be possible to download a version that can score a given poster's influence in his/her chat community? "This technology has considerable potential for commercialization," said Hovy.

Besides Hovy, the other members of the conversation study include ISI computer scientists Erin Shaw and Jihie Kim as well as graduate student Donghui Feng.

DARPA supported the research. The presentation will be at the June 5-7 Human Language Technology Conference at NYU in New York.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "System Pulls Answers From Online Conversations By Identifying The Alpha Chatterers." ScienceDaily. ScienceDaily, 7 June 2006. <www.sciencedaily.com/releases/2006/06/060607082240.htm>.
University of Southern California. (2006, June 7). System Pulls Answers From Online Conversations By Identifying The Alpha Chatterers. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2006/06/060607082240.htm
University of Southern California. "System Pulls Answers From Online Conversations By Identifying The Alpha Chatterers." ScienceDaily. www.sciencedaily.com/releases/2006/06/060607082240.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
How 2014 Shaped The Future Of The Internet

How 2014 Shaped The Future Of The Internet

Newsy (Dec. 18, 2014) It has been a long, busy year for Net Neutrality. The stage is set for an expected landmark FCC decision sometime in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins