Featured Research

from universities, journals, and other organizations

First Directly Imaged Brown Dwarf Companion To An Exoplanet Host Star

Date:
October 21, 2006
Source:
European Southern Observatory
Summary:
Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly and one of the faintest T dwarfs detected in the Solar neighbourhood so far. The detection yields important information on the conditions under which planets form.

The SofI small field image of the planet host star HD 3651, taken in June 2006 in the H-band. The co-moving companion HD 3651B is indicated with a black arrow.
Credit: Image courtesy of European Southern Observatory

Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly and one of the faintest T dwarfs detected in the Solar neighbourhood so far. The detection yields important information on the conditions under which planets form.

"Such a system is an interesting example that might prove that planets and brown dwarfs can form around the same star", said Markus Mugrauer, lead author of the paper presenting the discovery.

HD 3651 is a star slightly less massive than the Sun, located 36 light-years away in the constellation Pisces (the "Fish"). For several years, it has been known to harbour a planet less massive than Saturn, sitting closer to its parent star than Mercury is from the Sun: the planet accomplishes a full orbit in 62 days.

Mugrauer and his colleagues first spotted the faint companion in 2003 on images from the 3.8-m United Kingdom Infrared Telescope (UKIRT) in Hawaii. Observations in 2004 and 2006 using ESO's 3.6 m New Technology Telescope (NTT) at La Silla provided the crucial confirmation that the speck of light is not a spurious background star, but indeed a true companion. The newly found companion, HD 3651B, is 16 times further away from HD 3651 than Neptune is from the Sun.

HD 3651B is the dimmest directly imaged companion of an exoplanet host star. Furthermore, as it is not detected on the photographic plates of the Palomar All Sky Survey, the companion must be even fainter in the visible spectral range than in the infrared, meaning it is a very cool low-mass sub-stellar object. Comparing its characteristics with theoretical models, the astronomers infer that the object has a mass between 20 and 60 Jupiter masses, and a temperature between 500 and 600 degrees Celsius. It is thus ten times colder and 300 000 less luminous than the Sun. These properties place it in the category of cool T-type brown dwarfs.

"Due to their faintness even in the infrared, these cool T dwarfs are very difficult to find", said Mugrauer. "Only two other brown dwarfs with similar brightness are presently known. Their study will provide important insights into the atmospheric properties of cool sub-stellar objects."

More than 170 stars are currently known to host exoplanets. In some cases, these stars were also found to have one or several stellar companions, showing that planet formation can also take place in a dynamically more complex environment than our own Solar System where planet formation occurred around an isolated single star.

In 2001, Mugrauer and his colleagues started an observational programme to find out whether exoplanet host stars are single or married. In this programme, known exoplanet host stars are systematically imaged at two different epochs, at least several months apart. True companions can be distinguished from coincidental background objects as only they move together with the stars over time. With this effective search strategy several new companions of exoplanet host stars have been detected. Most of the detected companions are low-mass stars in the same evolutionary state as the Sun. In two cases, however, the astronomers found the companions to be white dwarfs, that is, stars at the end of their life. These intriguing systems bear evidence that planets can even survive the troubled last moments in the life of a nearby star.

The planet host star HD 3651 is thus surrounded by two sub-stellar objects. The planet, HD 3651b, is very close, while the newly found brown dwarf companion revolves around the star 1500 times farther away than the planet. This system is the first imaged example that planets and brown dwarfs can form around the same star.


Story Source:

The above story is based on materials provided by European Southern Observatory. Note: Materials may be edited for content and length.


Cite This Page:

European Southern Observatory. "First Directly Imaged Brown Dwarf Companion To An Exoplanet Host Star." ScienceDaily. ScienceDaily, 21 October 2006. <www.sciencedaily.com/releases/2006/10/061019192358.htm>.
European Southern Observatory. (2006, October 21). First Directly Imaged Brown Dwarf Companion To An Exoplanet Host Star. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/10/061019192358.htm
European Southern Observatory. "First Directly Imaged Brown Dwarf Companion To An Exoplanet Host Star." ScienceDaily. www.sciencedaily.com/releases/2006/10/061019192358.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins