Featured Research

from universities, journals, and other organizations

Ultraviolet Light Reveals Secrets Of Nanoscale Electronic Materials

Date:
October 25, 2006
Source:
Penn State
Summary:
An international team of scientists has used a novel technique to measure, for the first time, the precise conditions at which certain ultrathin materials spontaneously become electrically polarized. The research provides the fundamental scientific basis for understanding this "ferroelectric" state in materials needed for next-generation "smart card" memory chips and other devices.

In this diagonally striped picture, the distance between each line is about 0.4 nanometers and each of the bands is several nanometers. The picture is an electron-microscope image of a ferroelectric sandwich consisting of alternating dark ferroelectric layers of barium titanate and light nonferroelectric layers of strontium titanate. The bright dots in the dark layer are the positions of the barium titanate atoms.
Credit: Xiaoqing Pan, University of Michigan

An international team of scientists has used a novel technique to measure, for the first time, the precise conditions at which certain ultrathin materials spontaneously become electrically polarized. The research provides the fundamental scientific basis for understanding this "ferroelectric" state in materials needed for next-generation "smart card" memory chips and other devices. The research is published in a recent issue of the journal Science.

"We provide a complete picture of how the ferroelectric transition temperature changes when the electrical and mechanical conditions change within nanoscale ferroelectric materials," said Xiaoxing Xi, professor of physics and materials science and engineering at Penn State University, who led the research effort. The team is the first to use a technique known as ultraviolet Raman spectroscopy to reveal a range of temperatures, thicknesses, and structural configurations at which nanoscale barium titanate can store a switchable electric field. The scientists also performed theoretical calculations to predict the point at which materials transition into this ferroelectric state. The results of these calculations closely match the results of the team's experiments.

"The work led by Xiaoxing Xi on nano-thick ferroelectric multilayers is groundbreaking," comments Refik Kortan, a program manager at the Basic Energy Sciences division of the U. S. Department of Energy, one of the sponsors of the U.S.-funded research project. "It is truly remarkable that UV-Raman can resolve displacements in ultrathin films that are just a few atomic layers thick." Other sponsors include the National Science Foundation, the Office of Naval Research, and the National Aeronautics and Space Administration.

Various difficulties exist in fabricating materials that can retain their ferroelectric properties at small dimensions and at temperatures at or above room temperature. "How thin can a ferroelectric material be at room temperature?" is the fundamental question that lies at the root of efforts to determine how much data can be stored on next-generation electronic devices. "We found that a film of barium titanate (BaTiO3) whose thickness is just 4-tenths of a nanometer--or 4-hundred-millionths of a centimeter--can retain its ferroelectric properties when it is layered in thin sandwiches with non-ferroelectric layers of strontium titanate (SrTiO3)," said Darrell Schlom, professor of materials science and engineering at Penn State and a member of the research team. "This layer is just one molecule of barium titanate thick, the thinnest imaginable, but we have shown that it is ferroelectric at room temperature."

Xi explains, "The ferroelectric layer can induce ferroelectric properties in neighboring layers that normally are not ferroelectric, especially in materials that are easily polarized. For example, we found that even one layer of ferroelectric barium titanate is capable of polarizing 13 adjacent layers of strontium titanate." The scientists found that they could manipulate ferroelectricity by imposing different kinds of electrical and mechanical boundary conditions. The electrical conditions include the degree of resistance to polarization of the nonferroelectric material. The mechanical conditions included sandwiching ferroelectric layers between different layers of other materials, which mechanically restricts the movement of the atoms. By varying the thickness and composition of the nanoscale thin films, the researchers were able to change the phase-transition temperature by almost 500 Kelvin, obtaining ferroelectric properties more than 350 Kelvin--over 600 degrees Fahrenheit--above room temperature. "Our research shows that, under favorable conditions, room-temperature ferroelectricity can be strong and stable in nanoscale systems," Xi said.

The research team includes 22 scientists working in labs at Penn State, the University of Puerto Rico, the University of Wisconsin, the University of Michigan, Los Alamos National Laboratory, and Rutgers University in the United States, as well as at the National Atomic Energy Commission in Argentina and the University of Valencia in Spain. The collaboration grew over time with the addition of scientists who had access to the best high-performance Raman-spectroscopy devices and scientists who are specialists in materials fabrication, theoretical calculations, and structural characterization. "The number of names on this paper speaks well about teamwork and cooperation within and between different projects and across different universities," comments Lynnette Madsen, Program Director of Ceramics at the National Science Foundation.

The team successfully tackled Xi's goal of using ultraviolet Raman spectroscopy to detect the moment when vanishingly thin layers of materials developed ferroelectric properties under a variety of conditions--a goal that leading experts in the field initially told him was so difficult that it was "impossible" to achieve. "Because most measurement techniques that work for thick films don’t work well for films less than 100-nanometers thick, a new technique was needed, and I believed that UV-Raman spectroscopy should work," Xi explained. "Our record thinnest detections so far with UV-Raman spectroscopy are a layered superlattice film just 24-nanometers thick and a single-layer film just 10-nanometers thick."

Raman spectroscopy is a technique that uses electromagnetic radiation to probe the properties of a material. The probe used in the technique is a photon--a quantum of light--which interacts in the material with a phonon--a quantum of sound. From the resulting change in the energy of the photon after it scatters off a material, scientists can measure the vibration energy of the lattice that is formed by the material's atoms. Typically, the radiation used for Raman spectroscopy has the energy of visible green light, but light with this energy is not absorbed effectively by nanoscale ferroelectric films, and so it does not reveal much information about them. Ultraviolet light, however, is able to be absorbed, so Xi reasoned that it could be used with the Raman-spectroscopy technique as an effective ferroelectricity detector for these nanoscale materials.

"We can take advantage of the change in the symmetry of the nanoscale material's crystal structure that occurs at the ferroelectric phase transition," Xi said. "Because Raman spectroscopy cannot detect the phonon above the phase transition, but it can detect it after the material becomes ferroelectric, we can use this technique to detect the temperature at which the ferroelectric phase transition occurs."

Ultraviolet Raman spectroscopy is a very new technology that is in the early stages of being developed, and few instruments exist that can achieve the resolution that Xi and his research colleagues require. "The number of photons that change their energies after interacting with phonons of lattice vibration is very small, and it is difficult to detect this weak signal at UV frequencies," Xi said. Xi overcame this obstacle by building a collaboration with scientists whose labs contained high-resolution UV Raman scattering systems, where his former postdoctoral fellow Dimitri Tenne, now an assistant professor of physics at Boise State University, made the measurements presented in the paper published in Science.

"We have demonstrated that we can use UV Raman spectroscopy to discover more about the unusual phenomena that occur in ultrathin ferroelectric materials, and that it is possible to tune the ferroelectric properties of nanoscale materials by changing the electrical and mechanical boundary conditions," Xi said. "It is exciting to realize that this is just the beginning of a whole new field of research."


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Ultraviolet Light Reveals Secrets Of Nanoscale Electronic Materials." ScienceDaily. ScienceDaily, 25 October 2006. <www.sciencedaily.com/releases/2006/10/061025080209.htm>.
Penn State. (2006, October 25). Ultraviolet Light Reveals Secrets Of Nanoscale Electronic Materials. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2006/10/061025080209.htm
Penn State. "Ultraviolet Light Reveals Secrets Of Nanoscale Electronic Materials." ScienceDaily. www.sciencedaily.com/releases/2006/10/061025080209.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins