Featured Research

from universities, journals, and other organizations

'4D MRI' Technology Helps Predict Outcome Of Pediatric Heart Surgery

Date:
November 30, 2006
Source:
Georgia Institute of Technology
Summary:
Georgia Tech and Emory University researchers have developed an innovative new technology that will help pediatric cardiac surgeons design and test a customized surgical procedure before they ever pick up a scalpel. With a better understanding of each child's unique heart defect, surgeons could greatly improve the likelihood that children with complex defects requiring multiple surgeries over a period of several years could have smoother recoveries and an improved quality of life after their operations.

A model illustrating the direction and strength of blood flow through a child's pulmonary artery and connecting veins after certain changes are made to its shape.
Credit: Image courtesy of Georgia Institute of Technology

Georgia Tech and Emory University researchers have developed an innovative new technology that will help pediatric cardiac surgeons design and test a customized surgical procedure before they ever pick up a scalpel. With a better understanding of each child’s unique heart defect, surgeons could greatly improve the likelihood that children with complex defects requiring multiple surgeries over a period of several years could have smoother recoveries and an improved quality of life after their operations.

The technology, known as image-based surgical planning and developed with the help of pediatric cardiologists and pediatric surgeons at The Children’s Hospital of Philadelphia (CHOP) and Emory University, creates a three-dimensional model of the child’s heart with data from the child’s MRI scans at different times in the cardiac cycle, also called a4D MRI. The models allow surgeons to visualize the direction of blood flow and determine any energy loss in the heart. So if a surgeon were planning a certain correction to an area of a child’s heart, a model created by the system would show the surgeon how well blood would flow through the newly configured heart.

The goal of the Georgia Tech/Emory project is to create a complete system that allows surgeons to get a detailed look at the child’s heart functions with the new MRI system, design surgical procedures for optimum post-operative performance and evaluate the heart’s performance with a sophisticated blood flow computer simulation.

The work was presented this month at the American Heart Association’s Scientific Sessions meeting in Chicago and has been published in Circulation and the Annals of Thoracic Surgery.

“We use the MRI images and time data to create models of these children’s vascular systems and hearts to simulate how they currently work and how they could work after surgery,” said Ajit Yoganathan, Ph.D., a co-principal investigator on the project and associate chair of the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “The goal is to improve the quality of life for these children by understanding their current physiology and finding the best way to optimize the surgery for that particular child.”

While the program isn’t yet ready for use by surgeons outside the project, it could be available in about three to five years, Yoganathan said.

Although the normal heart has two ventricles or lower chambers of the heart used for pumping blood through the body, two out of every1,000 babies in the United States are born with just one lower chamber. Considered one of the most complex congenital heart defects, a single-ventricle heart often leads to congestive heart failure if not repaired.

Patients with this defect often undergo multiple surgeries to reconfigure the pulmonary and systemic systems in operations called Fontan repairs, a reconfiguration that diverts the blood flow coming to the right side of the heart directly to the lungs so that the heart no longer has to pump blood to the lungs. Staged over several years, these surgeries are a common, but not always successful, option used for treating a single-ventricle defect.

After a less-than-optimal operation, children sometimes experience a reduced capacity to perform physical activities and may experience blood clotting and ventricle arrhythmias. The Georgia Tech/Emory surgery planning system could eliminate the need for additional surgeries by optimizing early surgeries.

“The research is meant to get at the root of the ‘failing’ Fontan, investigating why these pumping chambers fail in the hopes of devising new strategies to give these children a second chance in life. Using advanced imaging and bioengineering tools, the project hopes to describe how blood flows in this type of circulation and how this blood flow might be altered to extend the life of the patients,” said Mark Fogel, M.D., director of cardiac MR in the Cardiac Center at Children’s Hospital and a key collaborator on the project.

The Georgia Tech/Emory team began work on a system to help surgeons address the unique challenges of Fontan repair. In essence, the system determines how any geometric change in the current heart configuration will change blood flow and strength.

To perfect their system, researchers combined computational and experimental studies to create a method of assessing an optimum vessel configuration. The group worked heavily with fluid dynamic studies in the lab to get the most accurate simulation of blood flow.

Another tool, developed by a team led by Jaroslaw Rossignac Ph.D. in Georgia Tech’s College of Computing, is a program that allows for manipulation of a3-D model of a patient’s cardiovascular system to try out different configurations with a mouse. Once the surgeon has the desired configuration, the new vascular configuration can then be tested with the Image-based surgical planning system to see how well the new surgical procedure would perform.

Georgia Tech and Emory completed the engineering aspects of the study with assistance from the University of North Carolina at Chapel Hill. The MRI and patient studies were gathered at CHOP and Children’s Healthcare of Atlanta’s Sibley Heart Center.

While the patient MRI database is currently only accessible to project participants, researchers are working with the National Institutes of Health (NIH), which funded the project, to open the database to other pediatric cardiologists and cardiac surgeons.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "'4D MRI' Technology Helps Predict Outcome Of Pediatric Heart Surgery." ScienceDaily. ScienceDaily, 30 November 2006. <www.sciencedaily.com/releases/2006/11/061128140542.htm>.
Georgia Institute of Technology. (2006, November 30). '4D MRI' Technology Helps Predict Outcome Of Pediatric Heart Surgery. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2006/11/061128140542.htm
Georgia Institute of Technology. "'4D MRI' Technology Helps Predict Outcome Of Pediatric Heart Surgery." ScienceDaily. www.sciencedaily.com/releases/2006/11/061128140542.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins