Featured Research

from universities, journals, and other organizations

Brain Wave Changes In Adolescence Signal Reorganization Of The Brain

Date:
December 8, 2006
Source:
American Physiological Society
Summary:
Brain wave changes in adolescence are related to age, but not sexual maturation, occur earlier in girls than boys and may be associated with one of the brain's major reorganization projects: synaptic pruning, a new study finds. During adolescence, the brain reorganizes and eliminates many synaptic connections, making the brain's information processing more efficient and powerful while consuming less energy.

Brain wave changes in adolescence are related to age, not sexual maturation, and may be associated with one of the brain's major reorganization projects: synaptic pruning, a new study finds.

Related Articles


The study, "The adolescent decline of NREM delta, an indicator of brain maturation, is linked to age and sex but not to pubertal stage," was undertaken by Irwin Feinberg, Lisa M. Higgins, Wong Yu Khaw and Ian G. Campbell, all of the University of California, Davis. The American Physiological Society published the study, which appears in the December issue of the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

In childhood, the brain has many synapses -- small junctions between neurons that transmit signals. The more junctions there are, the more intense the brain activity. During adolescence, the brain reorganizes and eliminates many synaptic connections, a process known as synaptic pruning.

This pruning makes the brain's information processing more efficient and powerful while consuming less energy. Previous studies have found that there is a steep decline in sleep slow wave activity, the delta wave, during adolescence. The authors hypothesized that the decline is caused by age-programmed synaptic pruning.

Brain changes begin at age 11

This study followed two groups of children over the course of two years: 31 children were nine years old at the beginning of the study. Thirty-eight children were 12 years old.

The researchers used an in-home electroencephalograph (EEG) to record the children's brain activity during sleep. Measurements were taken at six-month intervals and analyzed by computer. The researchers also recorded sexual maturity and physical growth (height, weight and body mass index) at each interval.

They found delta wave intensity across the 9-11 age group was:

  • unchanged
  • the same for girls and boys

They found delta wave intensity across the 12-14 year group:

  • declined by 25%
  • was related to age but unrelated to physical growth and sexual maturation
  • was related to gender, with lower intensity in girls than boys because girls begin the brain reorganization sooner
  • was unrelated to the later bed times and reduction in total sleep time that occurs during adolescence

Changes related to age

Previous studies had shown a delta wave activity decline of 50% between ages 10 and 20, but it was unclear when the change began and whether there were gender differences, Feinberg said. This study shows that changes in delta wave activity during sleep begin at about 11 years of age and declines 25% by age 14.

The gender difference observed in delta intensity among the 12-14 year old children suggests that girls, on average, begin adolescent brain maturation at least one year earlier than boys. However, once they begin this maturational process, it proceeds at the same rate in both sexes. Also, previous research had not resolved whether these changes are related to sexual maturation. This study suggests the change in delta wave activity occurs with age, not sexual maturity.

"It may seem surprising that age is the (predominant) factor in the delta power density decline," the authors wrote. "However, many maturational events in the development of the nervous system proceed on a programmed schedule." It is still possible, however, that the unknown brain stimulus that initiates sexual maturation in adolescence also initiates the changes in the brain, but that the processes then proceed independently.

"Longitudinal sleep EEG measurement could also provide a new arena for clinical studies of subjects at high risk of schizophrenia and other neurodevelopmental disorders," the authors noted. The emergence of schizophrenia during adolescence and the dramatic change in delta wave activity during that time might both be related to synaptic pruning, Feinberg said. "It is possible that sleep EEG changes will prove a relatively direct indicator of synaptic pruning," the authors concluded.

Funding

This study was supported by a grant from the U.S. Public Health Service.


Story Source:

The above story is based on materials provided by American Physiological Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physiological Society. "Brain Wave Changes In Adolescence Signal Reorganization Of The Brain." ScienceDaily. ScienceDaily, 8 December 2006. <www.sciencedaily.com/releases/2006/12/061207160458.htm>.
American Physiological Society. (2006, December 8). Brain Wave Changes In Adolescence Signal Reorganization Of The Brain. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/12/061207160458.htm
American Physiological Society. "Brain Wave Changes In Adolescence Signal Reorganization Of The Brain." ScienceDaily. www.sciencedaily.com/releases/2006/12/061207160458.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins