Featured Research

from universities, journals, and other organizations

Brain Wave Changes In Adolescence Signal Reorganization Of The Brain

Date:
December 8, 2006
Source:
American Physiological Society
Summary:
Brain wave changes in adolescence are related to age, but not sexual maturation, occur earlier in girls than boys and may be associated with one of the brain's major reorganization projects: synaptic pruning, a new study finds. During adolescence, the brain reorganizes and eliminates many synaptic connections, making the brain's information processing more efficient and powerful while consuming less energy.

Brain wave changes in adolescence are related to age, not sexual maturation, and may be associated with one of the brain's major reorganization projects: synaptic pruning, a new study finds.

The study, "The adolescent decline of NREM delta, an indicator of brain maturation, is linked to age and sex but not to pubertal stage," was undertaken by Irwin Feinberg, Lisa M. Higgins, Wong Yu Khaw and Ian G. Campbell, all of the University of California, Davis. The American Physiological Society published the study, which appears in the December issue of the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

In childhood, the brain has many synapses -- small junctions between neurons that transmit signals. The more junctions there are, the more intense the brain activity. During adolescence, the brain reorganizes and eliminates many synaptic connections, a process known as synaptic pruning.

This pruning makes the brain's information processing more efficient and powerful while consuming less energy. Previous studies have found that there is a steep decline in sleep slow wave activity, the delta wave, during adolescence. The authors hypothesized that the decline is caused by age-programmed synaptic pruning.

Brain changes begin at age 11

This study followed two groups of children over the course of two years: 31 children were nine years old at the beginning of the study. Thirty-eight children were 12 years old.

The researchers used an in-home electroencephalograph (EEG) to record the children's brain activity during sleep. Measurements were taken at six-month intervals and analyzed by computer. The researchers also recorded sexual maturity and physical growth (height, weight and body mass index) at each interval.

They found delta wave intensity across the 9-11 age group was:

  • unchanged
  • the same for girls and boys

They found delta wave intensity across the 12-14 year group:

  • declined by 25%
  • was related to age but unrelated to physical growth and sexual maturation
  • was related to gender, with lower intensity in girls than boys because girls begin the brain reorganization sooner
  • was unrelated to the later bed times and reduction in total sleep time that occurs during adolescence

Changes related to age

Previous studies had shown a delta wave activity decline of 50% between ages 10 and 20, but it was unclear when the change began and whether there were gender differences, Feinberg said. This study shows that changes in delta wave activity during sleep begin at about 11 years of age and declines 25% by age 14.

The gender difference observed in delta intensity among the 12-14 year old children suggests that girls, on average, begin adolescent brain maturation at least one year earlier than boys. However, once they begin this maturational process, it proceeds at the same rate in both sexes. Also, previous research had not resolved whether these changes are related to sexual maturation. This study suggests the change in delta wave activity occurs with age, not sexual maturity.

"It may seem surprising that age is the (predominant) factor in the delta power density decline," the authors wrote. "However, many maturational events in the development of the nervous system proceed on a programmed schedule." It is still possible, however, that the unknown brain stimulus that initiates sexual maturation in adolescence also initiates the changes in the brain, but that the processes then proceed independently.

"Longitudinal sleep EEG measurement could also provide a new arena for clinical studies of subjects at high risk of schizophrenia and other neurodevelopmental disorders," the authors noted. The emergence of schizophrenia during adolescence and the dramatic change in delta wave activity during that time might both be related to synaptic pruning, Feinberg said. "It is possible that sleep EEG changes will prove a relatively direct indicator of synaptic pruning," the authors concluded.

Funding

This study was supported by a grant from the U.S. Public Health Service.


Story Source:

The above story is based on materials provided by American Physiological Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physiological Society. "Brain Wave Changes In Adolescence Signal Reorganization Of The Brain." ScienceDaily. ScienceDaily, 8 December 2006. <www.sciencedaily.com/releases/2006/12/061207160458.htm>.
American Physiological Society. (2006, December 8). Brain Wave Changes In Adolescence Signal Reorganization Of The Brain. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2006/12/061207160458.htm
American Physiological Society. "Brain Wave Changes In Adolescence Signal Reorganization Of The Brain." ScienceDaily. www.sciencedaily.com/releases/2006/12/061207160458.htm (accessed July 30, 2014).

Share This




More Mind & Brain News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins