Featured Research

from universities, journals, and other organizations

Jet Engines Help Solve The Mysteries Of The Voice

Date:
March 14, 2007
Source:
University of Cincinnati
Summary:
Although scientists know about basic voice production -- the two "vocal folds" in the larynx vibrate and pulsate airflow from the lungs -- the larynx is one of the body's least understood organs. Sound produced by vocal-fold vibration has been extensively researched, but the specifics of how airflow actually affects sound have not been shown using an animal model -- until now.

Sid Khosla, MD, researches how airflow affects sound in the larynx.
Credit: University of Cincinnati

Although scientists know about basic voice production—the two “vocal folds” in the larynx vibrate and pulsate airflow from the lungs—the larynx is one of the body’s least understood organs.

Related Articles


Sound produced by vocal-fold vibration has been extensively researched, but the specifics of how airflow actually affects sound have not been shown using an animal model—until now.

Vortices, or areas of rotational motion that look like smoke rings, produce sound in jet engines. New research from the University of Cincinnati (UC) uses methods developed from the study of jet noise to identify similar vortices in an animal model.

Sid Khosla, MD, lead author of the study, says vortices may help explain why individual voices are different and can have a different richness and quality to their sound.

“If vortices didn’t affect sound production, the voice would sound mechanical,” says Khosla, assistant professor of otolaryngology. “The vortices can produce sound by a number of mechanisms. This complexity produces a sound that makes my voice different from yours.”

Khosla and his team report their findings in the March edition of the Annals of Otology, Rhinology and Laryngology.

“Understanding how airflow patterns affect sound in a jet engine (aeroacoustics) helps us determine how we can reduce jet noise,” says coauthor Ephraim Gutmark, PhD, a UC professor of aerospace engineering. “We can apply the same physical understanding of aeroacoustics to study normal and abnormal voice.”

According to Khosla, computational and theoretical models have been developed to demonstrate how vortices affect sound production, but the UC team is the first to demonstrate it using an animal model, which makes their findings more applicable to the human larynx.

“Currently, when surgery is required to treat voice disorders, it’s primarily done on the vocal cords,” says Khosla. “Actually knowing there are additional sources that affect sound may open up a whole new way for us to treat voice disorders.”

In addition to better surgery techniques, Khosla says, having a better understanding of how vortices affect voice production could help in the development of improved pharmacological approaches and clinical pathology services, as well as improved training of the voice.

Khosla and Gutmark’s collaborators in the study are UC’s Shanmugam Muruguppan, PhD, and Ronald Scherer, PhD, now at Bowling Green State University.


Story Source:

The above story is based on materials provided by University of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "Jet Engines Help Solve The Mysteries Of The Voice." ScienceDaily. ScienceDaily, 14 March 2007. <www.sciencedaily.com/releases/2007/03/070313144401.htm>.
University of Cincinnati. (2007, March 14). Jet Engines Help Solve The Mysteries Of The Voice. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2007/03/070313144401.htm
University of Cincinnati. "Jet Engines Help Solve The Mysteries Of The Voice." ScienceDaily. www.sciencedaily.com/releases/2007/03/070313144401.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins