Featured Research

from universities, journals, and other organizations

Finding Math Hard? Blame Your Right Parietal Lobe

Date:
March 23, 2007
Source:
University College London
Summary:
Scientists have, for the first time, induced difficulties with mathematics (dyscalculia) in subjects who normally find math easy. The study, which finds that the right parietal lobe is responsible for dyscalculia, potentially has implications for diagnosis and management through remedial teaching.

Scientists have, for the first time, induced difficulties with mathematics (dyscalculia) in subjects who normally find math easy. The study, which finds that the right parietal lobe is responsible for dyscalculia, potentially has implications for diagnosis and management through remedial teaching.

Related Articles


Dyscalculia is just as prevalent in the population as dyslexia and attention deficit hyperactivity disorder -- around 5% of the population is affected. However, dyscalculia has not been given the same attention as other disorders and the underlying brain dysfunction causing dyscalculia is still a mystery. It is hoped that this study will provide a better understanding of the condition and lead to better diagnosis and treatment.

Dr Roi Cohen Kadosh, of the UCL Institute of Cognitive Neuroscience, said: "This is the first causal demonstration that the parietal lobe is the key to understanding developmental dyscalculia. Most people process numbers very easily -- almost automatically -- but people with dyscalculia do not. We wanted to find out what would happen when the areas relevant to maths learning in the right parietal lobes were effectively knocked out for several hundred milliseconds. We found that stimulation to this brain region during a maths test radically impacted on the subjects' reaction time.

"This provides strong evidence that dyscalculia is caused by malformations in the right parietal lobe and provides sold grounds for further study on the physical abnormalities present in dyscalculics' brains. It's an important step to the ultimate goal of early diagnosis through analysis of neural tissue, which in turn will lead to earlier treatments and more effective remedial teaching."

Using neuronavigated transcranial magnetic stimulation (TMS) to stimulate the brain, scientists were able to bring about dyscalculia in normal subjects for a short time while the subjects completed a maths task that involved comparing two digits, one larger in physical size than the other and the other larger numerically. For example, the subjects compared a 2 and a 4. The 2 was in a larger font than the 4 and subjects had to decide which digit was numerically larger.

The effect of TMS lasted only a few hundred milliseconds in the subjects and was brought on just at the point when the subject had to evaluate the numbers and decide which had the greater value or which was physically bigger. The test was designed to measure the subjects' automatic processing of numbers and was rolled out to both people with the dysfunction and those without it.

The researchers found that non-dyscalculic participants displayed dyscalculic-like behaviour in number processing only during TMS-induced neuronal activity disruptions to the right intraparietal sulcus. These findings were further validated by testing participants suffering from developmental dyscalculia. The results of the dyscalculic group reproduced the behavioural results obtained in non-dyscalculic volunteers during right parietal TMS, but not after left parietal TMS or sham stimulation.

This novel approach of directly comparing healthy participants with TMS-induced virtual dyscalculia to participants suffering from developmental dyscalculia enabled the researchers to propose a direct causal relationship between malfunctions along the right intraparietal sulcus and developmental dyscalculia.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Cite This Page:

University College London. "Finding Math Hard? Blame Your Right Parietal Lobe." ScienceDaily. ScienceDaily, 23 March 2007. <www.sciencedaily.com/releases/2007/03/070322132931.htm>.
University College London. (2007, March 23). Finding Math Hard? Blame Your Right Parietal Lobe. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2007/03/070322132931.htm
University College London. "Finding Math Hard? Blame Your Right Parietal Lobe." ScienceDaily. www.sciencedaily.com/releases/2007/03/070322132931.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pending Comcast-Time Warner Merger Has DOJ, FCC Concerned

Pending Comcast-Time Warner Merger Has DOJ, FCC Concerned

Newsy (Apr. 20, 2015) The Department of Justice reportedly has concerns a Time Warner-Comcast merger would create an entity too large in the cable and broadband markets. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins