Featured Research

from universities, journals, and other organizations

Finding Math Hard? Blame Your Right Parietal Lobe

Date:
March 23, 2007
Source:
University College London
Summary:
Scientists have, for the first time, induced difficulties with mathematics (dyscalculia) in subjects who normally find math easy. The study, which finds that the right parietal lobe is responsible for dyscalculia, potentially has implications for diagnosis and management through remedial teaching.

Scientists have, for the first time, induced difficulties with mathematics (dyscalculia) in subjects who normally find math easy. The study, which finds that the right parietal lobe is responsible for dyscalculia, potentially has implications for diagnosis and management through remedial teaching.

Dyscalculia is just as prevalent in the population as dyslexia and attention deficit hyperactivity disorder -- around 5% of the population is affected. However, dyscalculia has not been given the same attention as other disorders and the underlying brain dysfunction causing dyscalculia is still a mystery. It is hoped that this study will provide a better understanding of the condition and lead to better diagnosis and treatment.

Dr Roi Cohen Kadosh, of the UCL Institute of Cognitive Neuroscience, said: "This is the first causal demonstration that the parietal lobe is the key to understanding developmental dyscalculia. Most people process numbers very easily -- almost automatically -- but people with dyscalculia do not. We wanted to find out what would happen when the areas relevant to maths learning in the right parietal lobes were effectively knocked out for several hundred milliseconds. We found that stimulation to this brain region during a maths test radically impacted on the subjects' reaction time.

"This provides strong evidence that dyscalculia is caused by malformations in the right parietal lobe and provides sold grounds for further study on the physical abnormalities present in dyscalculics' brains. It's an important step to the ultimate goal of early diagnosis through analysis of neural tissue, which in turn will lead to earlier treatments and more effective remedial teaching."

Using neuronavigated transcranial magnetic stimulation (TMS) to stimulate the brain, scientists were able to bring about dyscalculia in normal subjects for a short time while the subjects completed a maths task that involved comparing two digits, one larger in physical size than the other and the other larger numerically. For example, the subjects compared a 2 and a 4. The 2 was in a larger font than the 4 and subjects had to decide which digit was numerically larger.

The effect of TMS lasted only a few hundred milliseconds in the subjects and was brought on just at the point when the subject had to evaluate the numbers and decide which had the greater value or which was physically bigger. The test was designed to measure the subjects' automatic processing of numbers and was rolled out to both people with the dysfunction and those without it.

The researchers found that non-dyscalculic participants displayed dyscalculic-like behaviour in number processing only during TMS-induced neuronal activity disruptions to the right intraparietal sulcus. These findings were further validated by testing participants suffering from developmental dyscalculia. The results of the dyscalculic group reproduced the behavioural results obtained in non-dyscalculic volunteers during right parietal TMS, but not after left parietal TMS or sham stimulation.

This novel approach of directly comparing healthy participants with TMS-induced virtual dyscalculia to participants suffering from developmental dyscalculia enabled the researchers to propose a direct causal relationship between malfunctions along the right intraparietal sulcus and developmental dyscalculia.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Cite This Page:

University College London. "Finding Math Hard? Blame Your Right Parietal Lobe." ScienceDaily. ScienceDaily, 23 March 2007. <www.sciencedaily.com/releases/2007/03/070322132931.htm>.
University College London. (2007, March 23). Finding Math Hard? Blame Your Right Parietal Lobe. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2007/03/070322132931.htm
University College London. "Finding Math Hard? Blame Your Right Parietal Lobe." ScienceDaily. www.sciencedaily.com/releases/2007/03/070322132931.htm (accessed July 22, 2014).

Share This




More Computers & Math News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Plans To Speed Up Web Pages With New Image Format

Google Plans To Speed Up Web Pages With New Image Format

Newsy (July 21, 2014) Google is using compressed images in WebP format to help boost page loading times. The files are 25-to-34 percent smaller than PNGs and JPEGs. Video provided by Newsy
Powered by NewsLook.com
Uruguayan Creates Chess Game for Multiple Opponents

Uruguayan Creates Chess Game for Multiple Opponents

AFP (July 19, 2014) It no longer takes two to play chess – or at least according to a new version of the game invented by Uruguayan Gabriel Baldi, where up to four opponents can play. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Clock Ticks Down on Internet Speed Debate

Clock Ticks Down on Internet Speed Debate

Reuters - US Online Video (July 18, 2014) The FCC received more than 800,000 comments on whether and how internet speeds should be regulated, even crashing its system. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Google Won't Call Games With In-App Add-Ons Free, Apple Will

Google Won't Call Games With In-App Add-Ons Free, Apple Will

Newsy (July 18, 2014) The European Commission asked Google and Apple not to label apps "free" if they include in-app purchases. Google has complied; Apple has resisted. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins