Featured Research

from universities, journals, and other organizations

Robotics: Engineers Announce Plastic, Air- And Light-driven Device More Precise Than Human Hand

Date:
April 7, 2007
Source:
Johns Hopkins Medical Institutions
Summary:
Engineers report the invention of a motor without metal or electricity that can safely power remote-controlled robotic medical devices used for cancer biopsies and therapies guided by magnetic resonance imaging. The motor that drives the devices can be so precisely controlled by computer that movements are steadier and more precise than a human hand.

The new Johns Hopkins motor, dubbed PneuStep, consists of three pistons connected to a series of gears. The gears are turned by air flow, which is in turn controlled by a computer located in a room adjacent to the MRI machine. "We're able to achieve precise and smooth motion of the motor as fine as 50 micrometers, finer than a human hair," says Stoianovici.
Credit: Image courtesy of Johns Hopkins Medical Institutions

Engineers at the Johns Hopkins Urology Robotics Lab report the invention of a motor without metal or electricity that can safely power remote-controlled robotic medical devices used for cancer biopsies and therapies guided by magnetic resonance imaging. The motor that drives the devices can be so precisely controlled by computer that movements are steadier and more precise than a human hand.

"Lots of biopsies on organs such as the prostate are currently performed blind because the tumors are typically invisible to the imaging tools commonly used," says Dan Stoianovici, Ph.D., an associate professor of urology at Johns Hopkins and director of the robotics lab. "Our new MRI-safe motor and robot can target the tumors. This should increase accuracy in locating and collecting tissue samples, reduce diagnostic errors and also improve therapy."

A description of the new motor, made entirely out of plastics, ceramics and rubber, and driven by light and air, was published in the February issue of the IEEE/ASME Transactions on Mechanotronics.

The challenge for his engineering team was to overcome MRI's dependence on strong magnetic interference. Metals are unsafe in MRIs because the machine relies on a strong magnet, and electric currents distort MR images, says Stoianovici. The team used six of the motors to power the first-ever MRI-compatible robot to access the prostate gland. The robot currently is undergoing preclinical testing.

"Prostate cancer is tricky because it only can be seen under MRI, and in early stages it can be quite small and easy to miss," says Stoianovici.

The new Johns Hopkins motor, dubbed PneuStep, consists of three pistons connected to a series of gears. The gears are turned by air flow, which is in turn controlled by a computer located in a room adjacent to the MRI machine. "We're able to achieve precise and smooth motion of the motor as fine as 50 micrometers, finer than a human hair," says Stoianovici.

The robot goes alongside the patient in the MRI scanner and is controlled remotely by observing the images on the MR. The motor is rigged with fiber optics, which feeds information back to the computer in real time, allowing for both guidance and readjustment.

"The robot moves slowly but precisely, and our experiments show that the needle always comes within a millimeter of the target," says Stoianovici. This type of precision control will allow physicians to use instruments in ways that currently are not possible, he says.

"This remarkable robot has a lot of promise - the wave of the future is image-guided surgery to better target, diagnose and treat cancers with minimally invasive techniques," says Li-Ming Su, M.D., an associate professor of urology and director of laparoscopic and robotic urologic surgery at the Brady Urological Institute at Hopkins.

The research was funded by the National Institutes of Health, the Prostate Cancer Foundation, and a grant from the Johns Hopkins Medicine Alliance for Science and Technology Development Industry Committee. Current experiments with the robot are supported by the Patrick C. Walsh Foundation.

Authors on the paper are Stoianovici, Alexandru Patriciu, Doru Petrisor, Dumitru Mazilu, and Louis Kavoussi, all of Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Robotics: Engineers Announce Plastic, Air- And Light-driven Device More Precise Than Human Hand." ScienceDaily. ScienceDaily, 7 April 2007. <www.sciencedaily.com/releases/2007/04/070406145338.htm>.
Johns Hopkins Medical Institutions. (2007, April 7). Robotics: Engineers Announce Plastic, Air- And Light-driven Device More Precise Than Human Hand. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2007/04/070406145338.htm
Johns Hopkins Medical Institutions. "Robotics: Engineers Announce Plastic, Air- And Light-driven Device More Precise Than Human Hand." ScienceDaily. www.sciencedaily.com/releases/2007/04/070406145338.htm (accessed July 26, 2014).

Share This




More Computers & Math News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mobile App Gives Tour of Battle of Atlanta Sites

Mobile App Gives Tour of Battle of Atlanta Sites

AP (July 25, 2014) Emory University's Center for Digital Scholarship has launched a self-guided mobile tour app to coincide with the 150th anniversary of the Civil War's Battle of Atlanta. (July 25) Video provided by AP
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins