Featured Research

from universities, journals, and other organizations

Case Closed: MIT Gumshoes Solve 'Throbbing' Oil Mystery

Date:
July 19, 2007
Source:
Massachusetts Institute of Technology
Summary:
Try this at home. Pour clean water onto a plate. Wait for the ripples to stop. Then mix a small amount of mineral oil with an even smaller amount of detergent. Squeeze a tiny drop of that mixture onto the water and watch as the oil appears to pump like a beating heart. It's a simple experiment, but explaining what happens has long mystified the scientific community. Now an MIT team has cracked the case.

Professors Roman Stocker, left, and John Bush display a mixture of oil, detergent and water. Their research explains what happens when an oil drop containing a water-insoluble surfactant is placed on a water surface.
Credit: Donna Coveney

Hey kids! Try this at home. Pour clean water onto a small plate. Wait for all the ripples to stop. Then mix a small amount of mineral oil with an even smaller amount of detergent. Squeeze a tiny drop of that mixture onto the water and watch in amazement as the oil appears to pump like a beating heart.

It's a simple experiment, but explaining what makes the drop of oil throb--and then stop when deprived of fresh air--has long mystified the scientific community. Now, in work that could have applications in fields from biology to environmental engineering, an MIT team has cracked the case.

In the July 25 issue of the Journal of Fluid Mechanics, MIT Professors Roman Stocker of civil and environmental engineering and John Bush of mathematics explain what happens when an oil drop containing a water-insoluble surfactant (or material that reduces the surface tension of a liquid, allowing easier spreading) is placed on a water surface.

"It's an easy experiment to make. But getting the theory for it was not straightforward," Bush said. "Roman turned a microscope loose on the problem--which was key to finally understanding it."

The question of the physical phenomenon of oil spreading on a surface has been around for some time. Benjamin Franklin wrote about it in 1774 in the Transaction of the American Philosophical Society, after he saw Bermuda spear fishermen use oil to damp waves so they could more easily see fish under the ocean surface.

The question Stocker and Bush examined had another dimension: why oil with an added surfactant doesn't come to rest, but instead contracts and repeats the process in a periodic fashion.

The mechanism, they now know, is surface tension, or more precisely, evaporation-induced variations in surface tension. These changes in surface tension cause the drop to expand, then contract, and repeat the process every couple of seconds until it runs out of gas, which in this case, is surfactant. Covering the experiment stops the process because it prevents evaporation of the surfactant.

"We're dealing with three interfaces: between the oil drop, the water in the Petri dish, and the air above it," Stocker said, explaining surface tension. "A detergent is a surfactant, which reduces the surface tension of a liquid. The detergent molecules we added to the oil drop prefer to stay at the interface of the oil and water, rather than inside the oil drop."

Think of the oil detergent drop as a small lens with a rounded bottom. The surfactant in the drop moves to the bottom surface of the lens, where it interacts with the water to decrease the surface tension where oil meets water. This change in tension increases the forces pulling on the outer edges of the drop, causing the drop to expand.

The center of the drop is deeper than the edges, so more surfactant settles there, reducing the surface tension correspondingly. This causes the oil and surfactant near the outer edges of the drop to circulate. This circulation creates a shear (think of it as two velocities going in opposite directions), which generates very tiny waves rolling outward toward the edge. When these waves reach the edge, they cause small droplets to erupt and escape onto the water surface outside the drop. Videomicroscopy - essentially, attaching a video camera to a microscope - was critical in observing this step in the process. Those droplets of oil and surfactant disperse on the water and decrease the surface tension of the water surface, so the drop contracts.

As the surfactant evaporates, the surface tension of the water increases again, and the system is reset. Forces pull at the outer edges of the lens, and the cyclical process begins again.

But the beating ceases instantly when Stocker and Bush put a lid over it. If the surfactant can't evaporate, the oil drop remains stable. In the end, it was being able to stop the beating process that made it clear to the researchers that evaporation played a central role in the mechanism.

"This is a bizarre and subtle mechanism. Everybody was flummoxed," said Bush, whose recent research includes understanding how some insects walk on water.

He first heard about the oil drop phenomenon from Professor Emeritus Harvey Greenspan of mathematics, who had pondered it for some time. Bush in turn talked to Stocker, who was then an instructor in the Department of Mathematics. It took about three years of sporadic work (without funding), and the help of two undergraduate students who carried out the lab repetitions--Margaret Avener and Wesley Koo--but Stocker and Bush finally solved it.

To what end, the researchers don't yet know. "One rationalizes the physical world by understanding the mechanisms," said Bush, explaining the importance of basic scientific research. "One can never predict which mechanisms will be important."

"Oil contamination of water resources is a prominent problem in environmental engineering," said Stocker. "Awareness of the fundamental mechanisms governing the interaction between the two phases is critical to devise sound engineering solutions for remediation."

Spontaneous oscillations are observed in many natural systems, including nerve cells, muscle tissue, and the biological clocks responsible for circadian rhythms, the professors said. And previous work published on the oil drop problem had been carried out by scientists interested in seeing if the mechanism could explain biological oscillations.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Case Closed: MIT Gumshoes Solve 'Throbbing' Oil Mystery." ScienceDaily. ScienceDaily, 19 July 2007. <www.sciencedaily.com/releases/2007/07/070718001603.htm>.
Massachusetts Institute of Technology. (2007, July 19). Case Closed: MIT Gumshoes Solve 'Throbbing' Oil Mystery. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/07/070718001603.htm
Massachusetts Institute of Technology. "Case Closed: MIT Gumshoes Solve 'Throbbing' Oil Mystery." ScienceDaily. www.sciencedaily.com/releases/2007/07/070718001603.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins