Featured Research

from universities, journals, and other organizations

Bone-growing Nanomaterial Could Improve Orthopaedic Implants

Date:
September 18, 2007
Source:
Brown University
Summary:
Bone-forming cells grow faster and produce more calcium on anodized titanium covered in carbon nanotubes compared with plain anodized titanium and the non-anodized version currently used in orthopaedic implants, new research shows. The work, published in Nanotechnology, uncovers a new material that can be used to make more successful implants. The research also shows tantalizing promise for an all-new device: a "smart" implant that can sense and report on bone growth.

Possibly a terrific new material: A titanium surface covereed by carbon nanotubes could lead to faster, better growth of implanted bone-growing cells and an improved success rate for orthopaedic surgery. The carbon nanotubes could could even self-report, keeping doctors informed about the healing process.
Credit: Sirinrath Sirivisoot/Brown University

Bone-forming cells grow faster and produce more calcium on anodized titanium covered in carbon nanotubes compared with plain anodized titanium and the non-anodized version currently used in orthopaedic implants, new Brown University research shows. The work uncovers a new material that can be used to make more successful implants. The research also shows tantalizing promise for an all-new device: a “smart” implant that can sense and report on bone growth.

Related Articles


For orthopaedic implants to be successful, bone must meld to the metal that these artificial hips, knees and shoulders are made of. A team of Brown University engineers, led by Thomas Webster, has discovered a new material that could significantly increase this success rate.

The secret: carbon nanotubes on anodized titanium. The team took titanium – the most popular implant material around – and chemically treated it and applied an electrical current to it. This process, called anodization, creates a pitted coating in the surface of the titanium. Webster and his team packed those pits with a cobalt catalyst and then ran the samples through a chemical process that involved heating them to a scorching 700 C. That caused carbon nanotubes to sprout from each pit.

Researchers then placed human osteoblasts, or bone-forming cells, onto the nanotube-covered samples as well as onto samples of plain and anodized titanium. The samples were placed in an incubator. After three weeks, the team found that the bone cells grew twice as fast on the titanium covered in nanotubes. Cells interacting with the nanotubes also made significantly more calcium – the essential ingredient for healthy bones.

“What we found is possibly a terrific new material for joint replacement and other implants,” said Webster, associate professor of engineering at Brown. “Right now, bone doesn’t always properly meld to implants. Osteoblasts don’t grow or grow fast enough. Adding carbon nanotubes to anodized titanium appears to encourage that cell growth and function.”

Webster’s long-term vision for the new material is ambitious. With it, Webster hopes to create a new class of implants – ones that can sense bone growth then send that information to an external device. Doctors could monitor the output and determine whether to inject growth hormones or otherwise intervene to avoid additional surgery. Right now, implant patients must get an X-ray or undergo a bone scan to monitor bone growth.

Webster thinks these “biosensing” implants could even be designed to detect infection and be specially coated to release antibiotics or other drugs into the body.

Webster said the biosensing concept would work because when cells make calcium, an electrical current is created. That current can be conducted through carbon nanotubes and transmitted via radio frequency to a handheld device outside the body – a similar process to the one employed by state-of-the-art cardiac pacemakers.

“This technology would be incredibly exciting,” Webster said. “It could significantly improve patient health – and cut down on expensive diagnostic tests and surgery. We still have a long way to go to make an intelligent implant a reality, but our new results are a strong first step.”

Webster’s Brown research team included engineering graduate student Sirinrath Sirivisoot, the lead author of the Nanotechnology article, engineering graduate students Chang Yao and Xingcheng Xiao and professor of engineering Brian Sheldon.

Results are published in Nanotechnology. The Coulter Foundation funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Bone-growing Nanomaterial Could Improve Orthopaedic Implants." ScienceDaily. ScienceDaily, 18 September 2007. <www.sciencedaily.com/releases/2007/09/070917115300.htm>.
Brown University. (2007, September 18). Bone-growing Nanomaterial Could Improve Orthopaedic Implants. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2007/09/070917115300.htm
Brown University. "Bone-growing Nanomaterial Could Improve Orthopaedic Implants." ScienceDaily. www.sciencedaily.com/releases/2007/09/070917115300.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins