Featured Research

from universities, journals, and other organizations

Scientists Develop Technique For Extracting Hierarchical Structure Of Networks

Date:
May 3, 2008
Source:
Santa Fe Institute
Summary:
Researchers show that many real-world networks can be understood as a hierarchy of modules, where nodes cluster together to form modules, which themselves cluster into larger modules -- arrangements similar to the organization of sports players into teams, teams into conferences, and conferences into leagues, for example.

Networks -- used throughout the sciences in the study of biological, technological, and social complexity -- can often be too complex to visualize or understand.

Related Articles


In a May 1 Nature paper, "Hierarchical structure and the prediction of missing links in networks," Santa Fe Institute (SFI) researchers Aaron Clauset, Cristopher Moore, and Mark Newman show that many real-world networks can be understood as a hierarchy of modules, where nodes cluster together to form modules, which themselves cluster into larger modules -- arrangements similar to the organization of sports players into teams, teams into conferences, and conferences into leagues, for example.

This hierarchical organization, the researchers show, can simultaneously explain a number of patterns previously discovered in networks, such as the surprising heterogeneity in the number of connections some nodes have, or the prevalence of triangles in a network diagram. Their discovery suggests that hierarchy may, in fact, be a fundamental organizational principle for complex networks.

Unlike much previous work in this area, Clauset, Moore, and Newman propose a direct but flexible model of hierarchical structure, which they apply to networks using the tools of statistical physics and machine learning.

To demonstrate the practical utility of their model, they analyze networks from three disparate fields: the metabolic network of the spirochete Treponema pallidum (the bacteria that causes syphilis), a network of associations between terrorists, and a food web of grassland species. Even when only half of the connections in these networks were shown to their algorithm, the researchers found that hierarchical structure can predict missing connections with an accuracy of up to 80 percent.

"Many networks, particularly those in the biological sciences, are not well understood," says Clauset, an SFI Postdoctoral Fellow. "But hierarchy offers a way to understand their large-scale organization and, from this, predict what interactions we might have missed."

The Santa Fe Institute (SFI) is an acknowledged leader in multidisciplinary scientific research. Its objectives are to discover and understand the common fundamental principles in physical, computational, biological, and social complex systems that underlie many of the most profound issues facing science and society today. By transcending disciplines, breaking academic molds, and drawing together an international network of unorthodox creative thinkers, SFI is an independent non-profit research and education center supported by grants, charitable giving, and corporate relationships.


Story Source:

The above story is based on materials provided by Santa Fe Institute. Note: Materials may be edited for content and length.


Cite This Page:

Santa Fe Institute. "Scientists Develop Technique For Extracting Hierarchical Structure Of Networks." ScienceDaily. ScienceDaily, 3 May 2008. <www.sciencedaily.com/releases/2008/05/080501125414.htm>.
Santa Fe Institute. (2008, May 3). Scientists Develop Technique For Extracting Hierarchical Structure Of Networks. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/05/080501125414.htm
Santa Fe Institute. "Scientists Develop Technique For Extracting Hierarchical Structure Of Networks." ScienceDaily. www.sciencedaily.com/releases/2008/05/080501125414.htm (accessed October 25, 2014).

Share This



More Computers & Math News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins