Featured Research

from universities, journals, and other organizations

Scientists Develop Technique For Extracting Hierarchical Structure Of Networks

Date:
May 3, 2008
Source:
Santa Fe Institute
Summary:
Researchers show that many real-world networks can be understood as a hierarchy of modules, where nodes cluster together to form modules, which themselves cluster into larger modules -- arrangements similar to the organization of sports players into teams, teams into conferences, and conferences into leagues, for example.

Networks -- used throughout the sciences in the study of biological, technological, and social complexity -- can often be too complex to visualize or understand.

Related Articles


In a May 1 Nature paper, "Hierarchical structure and the prediction of missing links in networks," Santa Fe Institute (SFI) researchers Aaron Clauset, Cristopher Moore, and Mark Newman show that many real-world networks can be understood as a hierarchy of modules, where nodes cluster together to form modules, which themselves cluster into larger modules -- arrangements similar to the organization of sports players into teams, teams into conferences, and conferences into leagues, for example.

This hierarchical organization, the researchers show, can simultaneously explain a number of patterns previously discovered in networks, such as the surprising heterogeneity in the number of connections some nodes have, or the prevalence of triangles in a network diagram. Their discovery suggests that hierarchy may, in fact, be a fundamental organizational principle for complex networks.

Unlike much previous work in this area, Clauset, Moore, and Newman propose a direct but flexible model of hierarchical structure, which they apply to networks using the tools of statistical physics and machine learning.

To demonstrate the practical utility of their model, they analyze networks from three disparate fields: the metabolic network of the spirochete Treponema pallidum (the bacteria that causes syphilis), a network of associations between terrorists, and a food web of grassland species. Even when only half of the connections in these networks were shown to their algorithm, the researchers found that hierarchical structure can predict missing connections with an accuracy of up to 80 percent.

"Many networks, particularly those in the biological sciences, are not well understood," says Clauset, an SFI Postdoctoral Fellow. "But hierarchy offers a way to understand their large-scale organization and, from this, predict what interactions we might have missed."

The Santa Fe Institute (SFI) is an acknowledged leader in multidisciplinary scientific research. Its objectives are to discover and understand the common fundamental principles in physical, computational, biological, and social complex systems that underlie many of the most profound issues facing science and society today. By transcending disciplines, breaking academic molds, and drawing together an international network of unorthodox creative thinkers, SFI is an independent non-profit research and education center supported by grants, charitable giving, and corporate relationships.


Story Source:

The above story is based on materials provided by Santa Fe Institute. Note: Materials may be edited for content and length.


Cite This Page:

Santa Fe Institute. "Scientists Develop Technique For Extracting Hierarchical Structure Of Networks." ScienceDaily. ScienceDaily, 3 May 2008. <www.sciencedaily.com/releases/2008/05/080501125414.htm>.
Santa Fe Institute. (2008, May 3). Scientists Develop Technique For Extracting Hierarchical Structure Of Networks. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2008/05/080501125414.htm
Santa Fe Institute. "Scientists Develop Technique For Extracting Hierarchical Structure Of Networks." ScienceDaily. www.sciencedaily.com/releases/2008/05/080501125414.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Newsy (Feb. 26, 2015) Lenovo&apos;s website was hacked by what appears to be the infamous Lizard Squad group. The attack seems to be related to Lenovo&apos;s "Superfish" controversy. Video provided by Newsy
Powered by NewsLook.com
Cyber Criminals Holding Phone and Computer Data to Ransom

Cyber Criminals Holding Phone and Computer Data to Ransom

AFP (Feb. 26, 2015) Computer and smartphone viruses are holding an increasing number of devices hostage using “ransomware.” Duration:02:21 Video provided by AFP
Powered by NewsLook.com
China Shuns Big Tech Names

China Shuns Big Tech Names

Reuters - Business Video Online (Feb. 26, 2015) The Chinese government has taken products from major tech firms off its purchase list in favour of smaller domestic players, but experts warn the plan may backfire making them open to security risks. Eve Johnson reports. Video provided by Reuters
Powered by NewsLook.com
Apple Reveals Potential Date For Apple Watch Reveal

Apple Reveals Potential Date For Apple Watch Reveal

Newsy (Feb. 26, 2015) The company sent out announcements for a March 9 media event with a simple message, "Spring forward." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins