Featured Research

from universities, journals, and other organizations

Quantum Mechanical Con Game: Winning Every Time

Date:
May 6, 2008
Source:
American Physical Society
Summary:
For the first time, physicists have come up with a scheme that would allow a quantum mechanical expert to win every time in a con game with a victim who only knows about classical physics. Prior quantum cons have typically been vulnerable to simple countermeasures.

For the first time, physicists have come up with a scheme that would allow a quantum mechanical expert to win every time in a con game with a victim who only knows about classical physics. Prior quantum cons have typically been vulnerable to simple countermeasures.

A pair of physicists at Tel-Aviv University in Israel came up with the quantum cheat by imagining two people betting on the location of a particle hidden among a set of boxes. In the game, a quantum mechanical con artist named Alice turns away as her classical victim, Bob, is allowed to look inside one of two boxes sitting on a table to see if there is a particle inside. He then closes the box and Alice guesses whether or not Bob found anything in the box he chose. If she guesses correctly, she wins Bob's money, if not, she pays him.

Classically, there is a 50% chance of Alice getting it right. If instead she's adept at quantum mechanics, and has a third box hidden away, she can ensure that she always knows what Bob found in his box. All she has to do is prepare the particle in a state that essentially places it in all three boxes simultaneously, through a phenomenon known as quantum superposition. In effect, there is an equal chance of the particle turning up in any one of the boxes.

After Bob looks in one of the two boxes on the table, Alice measures the state of the particle in her hidden box. If she finds it empty, she knows Bob saw the particle in the box he opened. If she finds that the particle is in a superposition between two boxes, she knows that Bob opened the third box but didn't see anything inside. In either case, she always knows what Bob found, even though she has no way of knowing in advance where the particle will turn up or which box Bob chose to look in.

The authors of the paper admit that the current state of technology isn't good enough for a con artist to make money with quantum mechanics. But they believe that this is the first time anyone has shown that it's theoretically possible for someone like Alice to use quantum mechanics to win every time in a game that classical physics would only give her a fifty-fifty chance of winning. With advances in quantum technology, it may someday turn out that gambling is only risky for those of us who don't understand quantum mechanics.

This research by N. Aharon and L. Vaidman is to be published in a forthcoming edition of Physical Review A


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Quantum Mechanical Con Game: Winning Every Time." ScienceDaily. ScienceDaily, 6 May 2008. <www.sciencedaily.com/releases/2008/05/080505072755.htm>.
American Physical Society. (2008, May 6). Quantum Mechanical Con Game: Winning Every Time. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2008/05/080505072755.htm
American Physical Society. "Quantum Mechanical Con Game: Winning Every Time." ScienceDaily. www.sciencedaily.com/releases/2008/05/080505072755.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins