Featured Research

from universities, journals, and other organizations

Bipolar Disorder And Gene Abnormalities: Sodium, Calcium Imbalances Linked To Manic Depressive Episodes

Date:
August 18, 2008
Source:
NIH/National Institute of Mental Health
Summary:
A large genetic study of bipolar disorder has implicated machinery that balances levels of sodium and calcium in neurons. The disorder was associated with variation in two genes that make components of such ion channels. Although it's not yet known if or how the suspect genetic variation might affect the balance machinery, the results point to the possibility that bipolar disorder might stem, at least in part, from malfunction of ion channels.

The largest genetic analysis of its kind to date for bipolar disorder has implicated machinery involved in the balance of sodium and calcium in brain cells. Researchers supported in part by the National Institute of Mental Health, part of the National Institutes of Health, found an association between the disorder and variation in two genes that make components of channels that manage the flow of the elements into and out of cells, including neurons.

Related Articles


"A neuron's excitability – whether it will fire – hinges on this delicate equilibrium," explained Pamela Sklar, M.D., Ph.D., of Massachusetts General Hospital (MGH) and the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard, who led the research. "Finding statistically robust associations linked to two proteins that may be involved in regulating such ion channels – and that are also thought to be targets of drugs used to clinically to treat bipolar disorder – is astonishing."

Although it's not yet known if or how the suspect genetic variation might affect the balance machinery, the results point to the possibility that bipolar disorder might stem, at least in part, from malfunction of ion channels.

Sklar, Shaun Purcell, Ph.D., also of MGH and the Stanley Center, and Nick Craddock, M.D., Ph.D., of Cardiff University and the Wellcome Trust Case Control Consortiuum in the United Kingdom and a large group of international collaborators report on their findings online Aug. 17, 2008 in Nature Genetics.

"Faced with little agreement among previous studies searching for the genomic hot spots in bipolar disorder, these researchers pooled their data for maximal statistical power and unearthed surprising results," said NIMH Director Thomas R. Insel, M.D. "Improved understanding of these abnormalities could lead to new hope for the millions of Americans affected by bipolar disorder."

In the first such genome-wide association study for bipolar disorder, NIMH researchers last fall reported the strongest signal associated with the illness in a gene that makes an enzyme involved the action of the anti-manic medication lithium. However, other chromosomal locations were most strongly associated with the disorder in two subsequent studies.

Since bipolar disorder is thought to involve many different gene variants, each exerting relatively small effects, researchers need large samples to detect relatively weak signals of illness association.

To boost their odds, Sklar and colleagues pooled data from the latter two previously published and one new study of their own. They also added additional samples from the STEP-BD study and Scottish and Irish families, and controls from the NIMH Genetics Repository. After examining about 1.8 million sites of genetic variation in 10,596 people – including 4,387 with bipolar disorder – the researchers found the two genes showing the strongest association among 14 disorder-associated chromosomal regions.

Variation in a gene called Ankyrin 3 (ANK3) showed the strongest association with bipolar disorder. The ANK3 protein is strategically located in the first part of neuronal extensions called axons and is part of the cellular machinery that decides whether a neuron will fire. Co-authors of the paper had shown last year in mouse brain that lithium, the most common medication for preventing bipolar disorder episodes, reduces expression of ANK3.

Variation in a calcium channel gene found in the brain showed the second strongest association with bipolar disorder. This CACNA1C protein similarly regulates the influx and outflow of calcium and is the site of interaction for a hypertension medication that has also been used in the treatment of bipolar disorder.

In addition to NIMH, the research was also funded by NARSAD (National Alliance for Research on Schizophrenia and Depression), the Wellcome Trust, Johnson & Johnson Pharmaceutical Research & Development, the Johnson & Johnson Foundation, the Sylvan C. Herman Foundation, the Stanley Medical Research Institute, the Dauten Family, the Merck Genome Research Institute, and the National Health and Medical Research Council of Australia.


Story Source:

The above story is based on materials provided by NIH/National Institute of Mental Health. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Mental Health. "Bipolar Disorder And Gene Abnormalities: Sodium, Calcium Imbalances Linked To Manic Depressive Episodes." ScienceDaily. ScienceDaily, 18 August 2008. <www.sciencedaily.com/releases/2008/08/080817223548.htm>.
NIH/National Institute of Mental Health. (2008, August 18). Bipolar Disorder And Gene Abnormalities: Sodium, Calcium Imbalances Linked To Manic Depressive Episodes. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2008/08/080817223548.htm
NIH/National Institute of Mental Health. "Bipolar Disorder And Gene Abnormalities: Sodium, Calcium Imbalances Linked To Manic Depressive Episodes." ScienceDaily. www.sciencedaily.com/releases/2008/08/080817223548.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins