Featured Research

from universities, journals, and other organizations

Controlling Light With Sound: New Liquid Camera Lens As Simple As Water And Vibration

Date:
September 24, 2008
Source:
Rensselaer Polytechnic Institute
Summary:
New miniature image-capturing technology powered by water, sound and surface tension could lead to smarter and lighter cameras in everything from cell phones and automobiles to autonomous robots and miniature spy planes. Researchers have now designed and tested an adaptive liquid lens that captures 250 pictures per second and requires considerably less energy to operate than competing technologies.

A new technique for creating liquid lenses with water and sound could enable a new generation of low cost, lightweight, energy efficient cameras. This series of time-lapse photos shows how the lens, made up of two droplets of water vibrating at a high speed, changes shape and, in turn, moves in and out of focus.
Credit: Rensselaer/Carlos A Lopez

New miniature image-capturing technology powered by water, sound, and surface tension could lead to smarter and lighter cameras in everything from cell phones and automobiles to autonomous robots and miniature spy planes. 

Researchers at Rensselaer Polytechnic Institute have designed and tested an adaptive liquid lens that captures 250 pictures per second and requires considerably less energy to operate than competing technologies. 

The lens is made up of a pair of water droplets, which vibrate back and forth upon exposure to a high-frequency sound, and in turn change the focus of the lens. By using imaging software to automatically capture in-focus frames and discard any out of focus frames, the researchers can create streaming images from lightweight, low-cost, high-fidelity miniature cameras. 

“The lens is easy to manipulate, with very little energy, and it’s almost always in focus — no matter how close or far away it is from an object,” said project leader Amir H. Hirsa, professor and associate department head for graduate studies in the Department of Mechanical, Aerospace and Nuclear Engineering at Rensselaer. “There is no need for high voltages or other exotic activation mechanisms, which means this new lens may be used and integrated into any number of different applications and devices.” 

Most current methods for manipulating liquid lenses involve changing the size and shape of the area where the liquid contacts a surface, in order to bring an image into focus. This takes both time and valuable energy. Hirsa said a key feature of his new technique is that the water stays in constant, unchanging contact with the surface, thus requiring less energy to manipulate.

To do this, his new method couples two droplets of water through a cylindrical hole. When exposed to certain frequencies of sound, the device exploits inertia and water’s natural surface tension and becomes an oscillator, or something akin to a small pendulum: the water droplets resonate back and forth with great speed and a spring-like force. Researchers can control the rate of these oscillations by exposing the droplets to different sound frequencies. 

By passing light through these droplets, the device is transformed into a miniature camera lens. As the water droplets move back and forth through the cylinder, the lens moves in and out of focus, depending on how close it is to the object. The images are captured electronically, and software can be used to automatically edit out any unfocused frames, leaving the user with a stream of clear, focused video. 

“The great benefit of this new device is that you can create a new optical system from a liquid lens and a small speaker,” Hirsa said. “No one has done this before.”

The size of the droplets is the key to how fast they oscillate. Hirsa said that with small enough apertures and properly selected liquid volumes, he should be able to create a lens that oscillates as fast as 100,000 times per second — and still be able to effectively capture those images. 

Hirsa says he anticipates interest in his new device from cell phone manufacturers, who are constantly seeking new ways to improve the performance of their devices and outpace their competitors in terms of lighter weight, more energy efficient phones. He also envisions small, lightweight, liquid lens cameras being integrated into a new generation of unmanned and micro air vehicles used for defense and homeland security applications. 

Hirsa co-authored the paper with Carlos A. Lopez, who earned his doctorate at Rensselaer and now works for Intel Corp.’s research and development lab in Mexico. Hirsa and Lopez have filed a provisionary patent on this new technology. 

Funding for the project was awarded by the U.S. National Science Foundation.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. López et al. Fast focusing using a pinned-contact oscillating liquid lens. Nature Photonics, October 2008; DOI: 10.1038/nphoton.2008.198

Cite This Page:

Rensselaer Polytechnic Institute. "Controlling Light With Sound: New Liquid Camera Lens As Simple As Water And Vibration." ScienceDaily. ScienceDaily, 24 September 2008. <www.sciencedaily.com/releases/2008/09/080922122521.htm>.
Rensselaer Polytechnic Institute. (2008, September 24). Controlling Light With Sound: New Liquid Camera Lens As Simple As Water And Vibration. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/09/080922122521.htm
Rensselaer Polytechnic Institute. "Controlling Light With Sound: New Liquid Camera Lens As Simple As Water And Vibration." ScienceDaily. www.sciencedaily.com/releases/2008/09/080922122521.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins