Featured Research

from universities, journals, and other organizations

Unraveling 'Math Dyslexia'

Date:
September 26, 2008
Source:
University of Western Ontario
Summary:
New research could change the way we view math difficulties and how we assist children who face those problems. Scientists are using brain imaging to understand how children develop math skills, and what kind of brain development is associated with those skills.

Although school has been back for less than a month, it is likely that many children are already experiencing frustration and confusion in math class. Research at The University of Western Ontario in London, Canada could change the way we view math difficulties and how we assist children who face those problems.

Daniel Ansari is an assistant professor and Canada Research Chair in Developmental Cognitive Neuroscience in the Department of Psychology at Western. He is using brain imaging to understand how children develop math skills, and what kind of brain development is associated with those skills.

Research shows that many children who experience mathematical difficulties have developmental dyscalculia – a syndrome that is similar to dyslexia, a learning disability that affects a child's ability to read. Children with dyscalculia often have difficulty understanding numerical quantity. For example, they find it difficult to connect abstract symbols, such as a number, to the numerical magnitude it represents.

They can't see the connection, for instance, between five fingers and the number '5'. This is similar to children with dyslexia who have difficulty connecting sounds with letters. In a recent study Ansari and graduate student Ian Holloway showed that children who are better at connecting numerical symbols and magnitudes are also those who have higher math scores.

Ansari says parents and teachers are often not aware that developmental dyscalculia is just as common as developmental dyslexia and is frequently related to dyslexia. There is a great need to increase public awareness of developmental dyscalculia.

"Research shows that many children have both dyslexia and dyscalculia. We are now exploring further the question of exactly what brain differences exist between those who have just math problems and those who have both math and reading difficulties," says Ansari.

Using functional Magnetic Resonance Imaging (fMRI) to study the brains of children with math difficulties, Ansari says that it becomes clear that children with developmental dyscalculia show atypical activation patterns in a part of the brain called the parietal cortex.

This research holds tremendous promise for people who, in the past, had simply accepted that they are 'not good at math.' Understanding the causes and brain correlates of dyscalculia may help to design remediation tools to improve the lives of children and adults with the syndrome.

A report of this research is forthcoming in the Journal of Experimental Child Psychology.

"We have some cultural biases in North America around math skills," says Ansari. "We think that people who are good at math must be exceptionally intelligent, and even more dismaying and damaging, we have an attitude that being bad at math is socially acceptable. People who would never dream of telling others they are unable to read, will proclaim publicly they flunked math."

Ansari says that math skills are hugely important to life success and children who suffer math difficulties may avoid careers that, with help, might be a great fit for them.

An article by Ansari entitled "The Brain Goes to School: Strengthening the Education-Neuroscience Connection," will be published in the upcoming Education Canada, the magazine of the Canadian Education Association. In the article Ansari says technological advances such as fMRI have provided unprecedented insights into the working of the human brain.

"A teacher who understands brain structure and function will be better equipped to interpret children's behaviours, their strengths and weaknesses, from a scientific point of view, and this will in turn influence how they teach," says Ansari.


Story Source:

The above story is based on materials provided by University of Western Ontario. Note: Materials may be edited for content and length.


Cite This Page:

University of Western Ontario. "Unraveling 'Math Dyslexia'." ScienceDaily. ScienceDaily, 26 September 2008. <www.sciencedaily.com/releases/2008/09/080924151007.htm>.
University of Western Ontario. (2008, September 26). Unraveling 'Math Dyslexia'. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2008/09/080924151007.htm
University of Western Ontario. "Unraveling 'Math Dyslexia'." ScienceDaily. www.sciencedaily.com/releases/2008/09/080924151007.htm (accessed August 28, 2014).

Share This




More Mind & Brain News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins