Featured Research

from universities, journals, and other organizations

Detecting Human Activities Through Barriers: Doppler Radar Signals Become Animation

Date:
September 26, 2008
Source:
University of Texas at Austin, Electrical & Computer Engineering
Summary:
Scientists are one step closer to making x-ray vision a reality. They are perfecting radar systems that can detect human activities through barriers and convert the signals to virtual renderings similar to that of a video game.

Radar signals, on the left, are turned into an animation of a person walking, on the right. In the radar signals, the torso, which has less movement, is in the thicker orange color. The arms and legs, which move more, are in the thinner yellow color.
Credit: Hao Ling

University of Texas professor Hao Ling and Ph.D. candidate, Shobha Ram, are one step closer to making x-ray vision a reality. They are perfecting radar systems that can detect human activities through barriers and convert the signals to virtual renderings similar to that of a video game.

Related Articles


"There are several ongoing research programs in through-wall imaging, but they focus on building hardware sensors with very specific capabilities, says Ling. "That's expensive. What we want to do in this project is to first understand how human movements are manifested in radar data. Then utilize this knowledge to generate an image of a human."

Doppler based radio frequency radar systems are particularly suited for tracking moving humans. They suppress background clutter from stationary objects and provide enough detail to show the dynamic movements of different body parts, in the form of "microDopplers".

"A human has very complex motion dynamics. When walking, the arms and legs move very differently than the torso, and these subtle, minute movements translate into unique microDoppler signatures," Ling says.

Ling and Ram built a physics-based Doppler radar simulator using computer animation data of human motions. Then they incorporated barrier characteristics into the simulation model. Finally, they validated the results with a previously developed Doppler radar testbed with live human movements in line-of-sight situations and behind barriers. Several former and present graduate students including Youngwook Kim, Craig Christianson, Nick Whitelonis, and Yang Li also contributed to the project.

"MicroDoppler signatures could become important tools for monitoring human activities over long durations," says Ram. "The radar simulator, in particular, is a flexible, inexpensive tool we can use to optimize the sensor configurations and signal processing algorithms needed for generating an accurate virtual image of a human behind different types of barriers."

Ultimately, this technology has important applications in search and rescue missions, law enforcement operations, and physical surveillance.


Story Source:

The above story is based on materials provided by University of Texas at Austin, Electrical & Computer Engineering. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin, Electrical & Computer Engineering. "Detecting Human Activities Through Barriers: Doppler Radar Signals Become Animation." ScienceDaily. ScienceDaily, 26 September 2008. <www.sciencedaily.com/releases/2008/09/080925094719.htm>.
University of Texas at Austin, Electrical & Computer Engineering. (2008, September 26). Detecting Human Activities Through Barriers: Doppler Radar Signals Become Animation. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2008/09/080925094719.htm
University of Texas at Austin, Electrical & Computer Engineering. "Detecting Human Activities Through Barriers: Doppler Radar Signals Become Animation." ScienceDaily. www.sciencedaily.com/releases/2008/09/080925094719.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins