Featured Research

from universities, journals, and other organizations

Mathematicians Illuminate Deep Connection Between Classical And Quantum Physics

Date:
October 17, 2008
Source:
American Institute of Mathematics
Summary:
Mathematicians have proven a significant version of the quantum unique ergodicity conjecture. The new work, based in the pure mathematics area of number theory, illuminates deep connections between classical and quantum physics in what is being hailed as one of the best theorems of the year.

Fundamental domains and zeros of cusp forms. This picture shows the zeros of a weight 500 Hecke eigenform in a particular fundamental domain for SL(2,Z). Zeev Rudnick proved that QUE implies that the zeros of the associated cusp forms also are equidistributed in the (hyperbolic) upper half-plane. So, this picture is an illustration of the result of Holowinsky and Soundararajan.
Credit: Image courtesy of Fredrik Stromberg

In a seminar co-organized by Stanford University and the American Institute of Mathematics, Soundararajan announced that he and Roman Holowinsky have proven a significant version of the quantum unique ergodicity (QUE) conjecture.

"This is one of the best theorems of the year," said Peter Sarnak, a mathematician from Princeton who along with Zeev Rudnick from the University of Tel Aviv formulated the conjecture fifteen years ago in an effort to understand the connections between classical and quantum physics.

"I was aware that Soundararajan and Holowinsky were both attacking QUE using different techniques and was astounded to find that their methods miraculously combined to completely solve the problem," said Sarnak. Both approaches come from number theory, an area of pure mathematics which recently has been found to have surprising connections to physics.

The motivation behind the problem is to understand how waves are influenced by the geometry of their enclosure. Imagine sound waves in a concert hall. In a well-designed concert hall you can hear every note from every seat. The sound waves spread out uniformly and evenly. At the opposite extreme are "whispering galleries" where sound concentrates in a small area.

The mathematical world is populated by all kinds of shapes, some of which are easy to picture, like spheres and donuts, and others which are constructed from abstract mathematics. All of these shapes have waves associated with them. Soundararajan and Holowinsky showed that for certain shapes that come from number theory, the waves always spread out evenly. For these shapes there are no "whispering galleries."

Quantum chaos

The quantum unique ergodicity conjecture (QUE) comes from the area of physics known as "quantum chaos." The goal of quantum chaos is to understand the relationship between classical physics--the rules that govern the motion of macroscopic objects like people and planets when their motion is chaotic, with quantum physics--the rules that govern the microscopic world.

"The work of Holowinsky and Soundararajan is brilliant," said physicist Jens Marklof of Bristol University, "and tells us about the behaviour of a particle trapped on the modular surface in a strong magnetic field."

The problems of quantum chaos can be understood in terms of billiards. On a standard rectangular billiard table the motion of the balls is predictable and easy to describe. Things get more interesting if the table has curved edges, known as a "stadium." Then it turns out most paths are chaotic and over time fill out the billiard table, a result proven by the mathematical physicist Leonid Bunimovich.

In their QUE conjecture, Rudnick and Sarnak hypothesized that for a large class of systems, unlike the stadium there are no scars or bouncing ball states and in fact all states become evenly distributed. Holowinsky and Soundararajan's work shows that the conjecture is true in the number theoretic setting.

Highly excited states

The conjecture of Rudnick and Sarnak deals with certain kinds of shapes called manifolds, or more technically, manifolds of negative curvature, some of which come from problems in higher arithmetic. The corresponding waves are analogous to highly excited states in quantum mechanics.

Soundararajan and Holowinsky each developed new techniques to solve a particular case of QUE. The "waves" in this setting are known as holomorphic Hecke eigenforms. The approaches of both researchers work individually most of the time and miraculously when combined they completely solve the problem. "Their work is a lovely blend of the ideas of physics and abstract mathematics," said Brian Conrey, Director of the American Institute of Mathematics.

According to Lev Kaplan, a physicist at Tulane University, "This is a good example of mathematical work inspired by an interesting physical problem, and it has relevance to our understanding of quantum behavior in classically chaotic dynamical systems."


Story Source:

The above story is based on materials provided by American Institute of Mathematics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Mathematics. "Mathematicians Illuminate Deep Connection Between Classical And Quantum Physics." ScienceDaily. ScienceDaily, 17 October 2008. <www.sciencedaily.com/releases/2008/10/081010081650.htm>.
American Institute of Mathematics. (2008, October 17). Mathematicians Illuminate Deep Connection Between Classical And Quantum Physics. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2008/10/081010081650.htm
American Institute of Mathematics. "Mathematicians Illuminate Deep Connection Between Classical And Quantum Physics." ScienceDaily. www.sciencedaily.com/releases/2008/10/081010081650.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins