Featured Research

from universities, journals, and other organizations

Transplantation: 'Molecular Miscegenation' Blurs The Boundary Between Self And Non-self

Date:
November 2, 2008
Source:
Federation of American Societies for Experimental Biology
Summary:
A new discovery by London biologists may yield new ways of handling transplant rejection. Scientists confirm the two-way transfer of a molecule that instructs the immune system to tell "self" from "non-self." By disrupting the transfer of this molecule, newly transplanted organs should become "invisible" to the host's immune system. Such an advance would be considered a major medical breakthrough.

A new discovery by London biologists may yield new ways of handling the problem of transplant rejection. In a research article published in the November 2008 print issue of The FASEB Journal the scientists confirm the two-way transfer of a molecule (called "MHC") that instructs the immune system to tell "self" from "non-self."

By disrupting the transfer of this molecule, newly transplanted organs should become "invisible" to the host's immune system. Such an advance would be considered a major medical breakthrough because current methods of preventing organ rejection involve weakening the host's immune system, which can lead to life-threatening infections.

"The medical potential of this finding is enormous," says Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "Understanding molecular miscegenation should not only make transplantation more widespread and effective, but also shed light on how microbes disrupt our body's immune apparatus for distinguishing self from non-self."

The researchers made this discovery when they transplanted kidneys or hearts from one set of mice into another, with each set of mice having a different version of the molecule being studied. The researchers then conducted tests to see if the molecules were transferred. In the recipient mice, the donated kidneys or hearts and the host tissue expressed both types of molecules. This is the first time that this transfer has been shown to happen in a living system.

Wilson Wong, senior researcher on the study from King's College London, states that although the findings are tantalizing, they represent only a very primitive understanding of this phenomenon. Nevertheless, he hopes "that this study will lead to a better understanding of the immune system to benefit the development of new therapies in areas related to transplantation."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brown et al. Extensive and bidirectional transfer of major histocompatibility complex class II molecules between donor and recipient cells in vivo following solid organ transplantation. The FASEB Journal, 2008; 22 (11): 3776 DOI: 10.1096/fj.08-107441

Cite This Page:

Federation of American Societies for Experimental Biology. "Transplantation: 'Molecular Miscegenation' Blurs The Boundary Between Self And Non-self." ScienceDaily. ScienceDaily, 2 November 2008. <www.sciencedaily.com/releases/2008/10/081030144720.htm>.
Federation of American Societies for Experimental Biology. (2008, November 2). Transplantation: 'Molecular Miscegenation' Blurs The Boundary Between Self And Non-self. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2008/10/081030144720.htm
Federation of American Societies for Experimental Biology. "Transplantation: 'Molecular Miscegenation' Blurs The Boundary Between Self And Non-self." ScienceDaily. www.sciencedaily.com/releases/2008/10/081030144720.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Reasons Why Teen Birth Rates Are At An All-Time Low

Reasons Why Teen Birth Rates Are At An All-Time Low

Newsy (Aug. 20, 2014) A CDC report says birth rates among teenagers have been declining for decades, reaching a new low in 2013. We look at several popular explanations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins