Featured Research

from universities, journals, and other organizations

Satellites Approach Theoretical Shannon Limit

Date:
November 3, 2008
Source:
ICT Results
Summary:
Satellites are achieving unparalleled efficiency with a new protocol, DVB-S2. The performance of DVB-S2 satellite systems is very close to the theoretical maximum, defined by the Shannon Limit. That efficiency could be pushed even further by network optimization tools and equipment recently developed by European researchers.

Satellites are achieving unparalleled efficiency with a new protocol, DVB-S2. The performance of DVB-S2 satellite systems is very close to the theoretical maximum, defined by the Shannon Limit.
Credit: iStockphoto/Andrey Volodin

Satellites are achieving unparalleled efficiency with a new protocol, DVB-S2. The performance of DVB-S2 satellite systems is very close to the theoretical maximum, defined by the Shannon Limit. That efficiency could be pushed even further by network optimisation tools and equipment recently developed by European researchers.

European researchers have created network optimisation hardware and software tools that are able to manage satellite resources more efficiently. The developed tools are able to push the state of the art in satellite transmission technology even further. The increased efficiencies lead to cheap broadband, TV and voice access from anywhere.

The satellite option is a compelling solution to the broadband problem for rural areas, known as the digital divide. Currently, the vast majority of broadband access is confined to Europe’s cities and towns, where people live close to telephone exchanges and can access cheap and efficient ADSL.

But vast numbers of Europeans also live in rural or even isolated regions and providing broadband access for them is more complicated.

But not, perhaps, for much longer. Recent progress in satellite technology has led to vastly improved bandwidth efficiencies. The newly developed DVB-S2, which stands for digital video broadcast satellite second generation, improves on DVB-S by a purported 30%.

“Using satellite resource management tools, based on cross-layer techniques, the IMOSAN project is trying to push that technology even further, in order to make it more attractive not only from the technical aspects, but from the business point of view as well,” explains Anastasios Kourtis, coordinator of the EU-funded project.

Cross-layer techniques work across the application, service and physical layers of a communication medium to maximise efficient usage of bandwidth.

Approaching the Shannon Limit

The Shannon Limit establishes the maximum capacity of any channel. A channel is subject to bandwidth and noise restrictions, but its capacity can be improved with clever modulation and multiplexing techniques. The theoretical ultimate limit of a channel for specific bandwidth and signal-to-noise ratio is called the Shannon Limit.

Like the speed of light, that limit cannot be overcome and, again like the speed of light, it is very difficult even to approach it.

The inherent feature of DVB-S2, called Adaptive Coding and Modulation (ACM), allows a satellite system to adapt, in real time, to various transmission conditions and service demands. In this respect, satellite channels are very close to their theoretical limit.

“The IMOSAN consortium developed innovative software and hardware modules and protocols, called the Satellite Resource Management System (SRMS) that apply ACM to voice, data and TV in a clever way, allowing the provision of cost-effective ‘triple-play’ satellite services to users in rural or isolated areas,” Kourtis explains.

Key advance

SRMS was a key advance, but only one of a series of innovations and improvements the team performed on the DVB-S2 system. They also developed hardware and software that supports MPEG-2 HDTV. They developed software that can use both the older Multiprotocol Encapsulation (MPE) scheme and the newer Ultra Light Encapsulation (ULE) one. Both have also been optimised for IPv4 or IPv6.

IPv4 is the current Internet Protocol (IP) that we mainly use for all data communications. But the unique IP addresses are running out rapidly, and the protocol is creaking under the strain of modern network demands. IPv6 will address this shortage and offer other new features to improve the internet.

It offers so many unique addresses that it would be possible to give an address to every individual grain of sand on earth and still have enough numbers left to give a unique one to every individual on the planet, any pets they have and all the devices they own. IPv6 also provides better security and error correction and it is the IP standard of the future. Including it in their system means that IMOSAN has future-proofed its work.

The work of IMOSAN is expected to have significant impact on satellite communications.

“The innovative tools and techniques that were developed in the frame of IMOSAN, gave [us] a great opportunity [for] efficient collaboration among private-sector companies and public academic organisations, with a common goal: to provide cost-effective broadband satellite services to rural and isolated areas,” Kourtis concludes. This should help tackle the digital divide problem.

The IMOSAN project is funded by the ICT strand of the EU’s Sixth Framework Programme for research.


Story Source:

The above story is based on materials provided by ICT Results. Note: Materials may be edited for content and length.


Cite This Page:

ICT Results. "Satellites Approach Theoretical Shannon Limit." ScienceDaily. ScienceDaily, 3 November 2008. <www.sciencedaily.com/releases/2008/10/081031103030.htm>.
ICT Results. (2008, November 3). Satellites Approach Theoretical Shannon Limit. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2008/10/081031103030.htm
ICT Results. "Satellites Approach Theoretical Shannon Limit." ScienceDaily. www.sciencedaily.com/releases/2008/10/081031103030.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins