Featured Research

from universities, journals, and other organizations

Detecting Tiny Twists With A Nanomachine

Date:
November 7, 2008
Source:
Boston University
Summary:
Scientists have developed a nanoscale spin-torsion oscillator that can measure miniscule amounts of twisting or torque in a metallic nanowire. The device can be used to uncover spin-dependent fundamental forces in particle physics and have applications in spintronics, chemistry, biology and fundamental physics.

Researchers at Boston University working with collaborators in Germany, France and Korea have developed a nanoscale torsion resonator that measures miniscule amounts of twisting or torque in a metallic nanowire. This device, the size of a speck of dust, might enable measurements of the untwisting of DNA and have applications in spintronics, fundamental physics, chemistry and biology.

Spin-induced torque is central to understanding experiments, from the measurement of angular momentum of photons to the measurement of the gyromagnetic factor of metals and a very miniaturized – about 6 microns -- version of a gyroscope that measures the torques produced by electrons changing their spin states. It can be used to uncover new spin-dependent fundamental forces in particle physics, according to Raj Mohanty, Boston University Associate Professor of Physics.

"This is perhaps the most sensitive torque measurement every reported," said Mohanty. "The size of the torque measured by this experiment is smaller than the typical torque produced by the untwisting of a doubly-stranded DNA."

In a just released paper in Nature Nanotechnology entitled "Nanomechanical detection of itinerant electron spin flip," Mohanty and his research team developed a highly sensitive way to directly measure torque using microelectronic mechanical systems with spin electronics. Their approach was to detect and control spin-flip torque -- a phenomenon that occurs in a metallic nanowire, that is half ferromagnetic and the other is nonmagnetic. The spins of itinerant electrons are "flipped" at the interface between the two regions to produce a torque.

The team developed a microscopic spin-torsion device fabricated by electron beam lithography and nanomachining that mechanically measures the changes in spin states in a magnetic field. This device was operated at one tenth of a degree close to absolute zero.

The team has been working on demonstrating the opposite effect. Under the application of an external torque spin-up and spin-down electrons can be separated to two physically distinct locations, creating a spin battery. This is similar to a conventional charge battery with positive and negative polarities. When connected with an electrical path, electricity flows from one side to the other. But instead of electric current, the flow in the spin battery involves the spin – which can be used to store and manipulate information, the basis of an emerging technology called spintronics.

"The measurements with a nanoscale torsion resonator will be useful in uncovering new fundamental forces and, in theory, for characterizing torque producing molecules and DNA." said Mohanty.

Mohanty's research collaborators for the paper are Guiti Zolfagharkhani, then a graduate student at Boston University's Department of Physics, Alexi Gaidarzhy then a graduate student of BU's Department of Mechanical and Aerospace Engineering, Pascal Degiovanni of the Ecole Normale Superieure and Universite de Lyon in France, Stefan Kettemann of Jacobs University in Bremen, Germany and Peter Fulde at the Asia Pacific Center for Theoretical Physics in Namgu Pohang, Korea.

The research was supported by National Science Foundation


Story Source:

The above story is based on materials provided by Boston University. Note: Materials may be edited for content and length.


Cite This Page:

Boston University. "Detecting Tiny Twists With A Nanomachine." ScienceDaily. ScienceDaily, 7 November 2008. <www.sciencedaily.com/releases/2008/11/081102134637.htm>.
Boston University. (2008, November 7). Detecting Tiny Twists With A Nanomachine. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2008/11/081102134637.htm
Boston University. "Detecting Tiny Twists With A Nanomachine." ScienceDaily. www.sciencedaily.com/releases/2008/11/081102134637.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins