Featured Research

from universities, journals, and other organizations

SAFEDRIVE Delivers Safety And Efficiency On Airport Runways

Date:
November 13, 2008
Source:
Eureka
Summary:
French and Portuguese partners, working together in the EUREKA-funded SAFEDRIVE project, have developed an important new satellite navigation-based system for managing airport ground traffic.

French and Portuguese partners, working together in the EUREKA-funded SAFEDRIVE project, have developed an important new satellite navigation-based system for managing airport ground traffic.

Today's airports are straining under the demands for increased capacity and high traffic throughput. This means more planes on runways but also more ground-based support vehicles, requiring ever tightening coordination of aircraft and taxiway and runway support. The EUREKA-funded project E!3142-SAFEDRIVE, coordinated by France’s M3 Systems, is using EGNOS satellite navigation signals to provide better information to vehicle drivers and better safety for flight crews and passengers.

In just a few short years, satellite positioning has become a standard and essential tool for navigating. Ship and aircraft crews, cars and trucks around the world would all be hard-pressed to revert to traditional navigation methods if GPS signals were switched off tomorrow. Europe is well on its way to establishing its own Global Navigation Satellite System (GNSS), called Galileo. EGNOS (European Geostationary Navigation Overlay Service) is essentially Europe's ‘pre-Galileo' system, its first concrete venture into satellite navigation.

“EGNOS is the European complement to GPS," explains SAFEDRIVE project coordinator Marc Pollina. "It is an augmentation system that improves the reliability and precision of GPS positioning. This added reliability is a key requirement for people and vehicles operating in critical areas such as airports."

Concrete terms

In the future, the impact of air traffic delays combined with the many environmental, economic and commercial challenges facing airports is likely to generate further congestion, even at airports that are not yet experiencing capacity problems.

The SAFEDRIVE project is advancing EGNOS-based technologies and service provision by developing key components such as a new modular vehicle transponder, providing user interface, navigation and communication capabilities. In addition, an innovative ground coordination station will host vehicle management applications, including monitoring and situation preparation capabilities, interfacing with vehicle transponders via wireless UHF or Wi-Fi links, and with air traffic control and airport operators.

"In simple terms," says Pollina, "SAFEDRIVE transmits vehicle position to a ground coordination station and broadcasts the airport situation from the coordination station to the vehicle. This increases situation awareness of vehicle drivers and also provides vehicle location to other airport personnel."

The wireless network linking vehicles and the ground coordination station is bandwidth limited and has to deliver a real time alarm generation delay of just one second. Communication is managed via a 'dynamical slot allocation table'. The algorithm used for the table has to account for the bandwidth capability, the number of vehicles and their parameters, and the airport configuration.

The project places particular emphasis on automation and driver interface ergonomics. "Automated control is a key priority," says Pollina. "This will mean increased reliability and safety. Avoiding runway incursions by vehicles is a major technological challenge in terms of service integrity and is closely linked to driver operational interface."

Larger context

SAFEDRIVE is a prime example of a new application using Europe's EGNOS satellite positioning system in a crucial 'safety-of-life' transport application. It could play an important role in the EU's Single European Sky initiative, aimed at creating a new system of more efficient air traffic management.

"Our technology significantly advances the optimisation of ground operations at airports, which means fewer delays and better service to the flying passenger," says Pollina. In the short term, EGNOS-based applications like those envisaged under SAFEDRIVE will enable increased air traffic capacity at smaller and less equipped airports, he explains, thereby decreasing congestion at larger ones.

Specifically, the SAFEDRIVE project aims at implementing EUROCONTROL recommendations on A-MGCS (Advanced Surface Movement Guidance and Control Systems) for airport surface vehicles, tackling the problem of congestion in European airspace arising from the insufficient integration of Europe’s air traffic control systems.

"The potential efficiency gains for aviation are huge, including fuel savings, better use of resources such as airports and airspace, improved safety and lower costs for technologies, including infrastructure." SAFEDRIVE, says Pollina, will mean real improvements for individual airports and for sustainable European aviation as a whole, but it could also be a key element in a larger global transport system. The market prospects are stimulating.

The new technology will be affordable for mid-sized airports, says Pollina. “The European market comprises about 150 medium-sized airports alone," he explains. "However, in the future a much bigger market can be envisaged if we think globally and if we apply SAFEDRIVE concepts to other sectors such as inland waterway navigation and maritime transport."

Benefiting through teamwork

M3 Systems is a leader in geo-positioning and communication technologies. SAFEDRIVE is the continuation of the DELTA project, which was financed by the French Research Ministry. The current consortium also includes experts in telecomms, international airport operations, and a research institute.

Pollina says SAFEDRIVE participants have reaped real benefits thanks to the co-operative research approach. "As a company, M3 Systems now has a better understanding of user needs, thanks to our airport partners. And on the R&D side, we have had new opportunities to experiment with technologies that are not part of our core business.

“Not only are we advancing our own interests as companies and organisations in this project," he continues, "but we also contribute to the confirmation of EGNOS today and the European Galileo satellite navigation system tomorrow, major infrastructure and ultimately commercial investments being made at European level.

“Working within the EUREKA framework allowed us to bring together a range of European expertise in this area. We also like the fact that EUREKA is definitely market oriented and 'light' on administration."


Story Source:

The above story is based on materials provided by Eureka. Note: Materials may be edited for content and length.


Cite This Page:

Eureka. "SAFEDRIVE Delivers Safety And Efficiency On Airport Runways." ScienceDaily. ScienceDaily, 13 November 2008. <www.sciencedaily.com/releases/2008/11/081113111337.htm>.
Eureka. (2008, November 13). SAFEDRIVE Delivers Safety And Efficiency On Airport Runways. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/11/081113111337.htm
Eureka. "SAFEDRIVE Delivers Safety And Efficiency On Airport Runways." ScienceDaily. www.sciencedaily.com/releases/2008/11/081113111337.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins