Featured Research

from universities, journals, and other organizations

Precise Measurement Of Phenomenon Advances Solar Cell Understanding

Date:
November 27, 2008
Source:
Washington University in St. Louis
Summary:
Researchers have shed light on a basic process that could improve future solar cells. They have now directly measured the rate of hole transfer between identical porphyrin compounds in their ground states. These results are key to understanding the fundamental processes underlying charge separation and have applications for improving the efficiency of solar cells.

Dewey Holten, Ph.D., WUSTL professor of chemistry in Arts & Sciences (left) and WUSTL chemistry graduate student Hee-eun Song examine data in Holten's laboratory. The two have made a breakthrough in the electron transfer process that could have a significant impact on solar cell design.
Credit: Image courtesy of Washington University in St. Louis

Researchers at Washington University in St. Louis have shed light on a basic process that could improve future solar cells.

"One type of solar cell design starts with a chain of chromophores strung between two electrodes," explained Dewey Holten, Ph.D., professor of chemistry in Arts & Sciences. "This chain absorbs the light energy and directs that energy toward one electrode, where it is deposited as an electron. The molecule that lost the electron now has a positive charge left behind, called a hole. The hole migrates down the chain toward the opposite electrode. The electron and the hole recombine in the external circuit, creating an electrical current to do work."

Holten and graduate student Hee-eun Song have directly measured the rate of hole transfer between identical porphyrin compounds in their ground states. These results are key to understanding the fundamental processes underlying charge separation in this sort of structure and have applications for improving the efficiency of solar cells.

Their results represent the first time that ground-state hole transfer rates have been precisely measured. Previously, hole transfer in chains of porphrin molecules was known to take from 20 picoseconds to 50 nanoseconds, a range that spans three orders of magnitude. These studies have defined the time as 0.5-1 nanosecond.

The work has been published in the Journal of the American Chemical Society and is in press at the Journal of Physical Chemistry B and Photochemistry and Photobiology. The Department of Energy Solar Photochemistry Program provided funding.

Hopping downhill

Thermodynamic stability is often the driving force for the hole to move down the chain. However, this requires that the chain be made up of a variety of molecules so that each hop is downhill in energy.

"From a synthetic standpoint, it is easier to build a string of similar molecules with a minimum number of energy gradient steps built in. The challenge then becomes monitoring hole transfer between identical molecules," said Holten.

The multiporphyrinic arrays they studied were synthesized by a group at North Carolina State University under the direction of Jonathan Lindsey, Ph.D., Glaxo Distinguished University Professor of Chemistry.

Holten and his group placed the molecular arrays in a predefined starting form by electrochemically oxidizing one of the porphyrins to generate the hole and exciting another with light to make an electronic excited state. Then they used ultrafast femtosecond timescale transient absorption spectroscopy to monitor the hole transfer process between equivalent porphyrins.

"We compared the spectroscopic and kinetic results for the monomer, dyads, and triads," Holten said. "From this information, we could back out the rates of hole transfer between the equivalent sites."

David Bocian, Ph.D., professor of chemistry at the University of California, Riverside and his group performed additional spectroscopic studies.

"This work is an example of how an exciting collaboration between scientists can produce results that are fundamentally important, develop a general experimental method that can be adopted by other scientists, and also have real world applications," said Holten.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "Precise Measurement Of Phenomenon Advances Solar Cell Understanding." ScienceDaily. ScienceDaily, 27 November 2008. <www.sciencedaily.com/releases/2008/11/081118161601.htm>.
Washington University in St. Louis. (2008, November 27). Precise Measurement Of Phenomenon Advances Solar Cell Understanding. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/11/081118161601.htm
Washington University in St. Louis. "Precise Measurement Of Phenomenon Advances Solar Cell Understanding." ScienceDaily. www.sciencedaily.com/releases/2008/11/081118161601.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins