Featured Research

from universities, journals, and other organizations

‘SMART’ Quality Control System Cuts Risk Of Human Error On Assembly Lines

Date:
December 16, 2008
Source:
Eureka
Summary:
Artificial intelligence has been used in a EUREKA-backed project to develop a quality control system that greatly reduces the risk of human error on assembly lines.

Artificial intelligence has been used in a EUREKA-backed project to develop a quality control system that greatly reduces the risk of human error on assembly lines.

The four teams who worked on Project E!3450-QSPAI have achieved a non-contact activation program that commands and monitors laser-scanning for precise panel measurement, and triangulation methods for positioning components. Although existing technologies, notably in computing and lasers, have been used, it is their integration that makes this control system unique.

The project was instigated and led by Trimo d.d., a specialist engineer and producer of prefabricated steel buildings and components, based at Trebnje, some 50 km south-west of Ljubljana. The other partners were two faculties of the University of Ljubljana – Computer and Information Science, and Electrical Engineering – and the Institut fuer Sandwichtechnik, of Mainz, Germany.

The challenge

Trimo wanted greater quality control during its manufacture of Trimoterm lightweight, fireproof sandwich-panels as the process was prone to delays and other glitches, including human actions, which impact on product quality.

Operators were unable to monitor continuously each of the many production steps; neither could they predict all the indirect consequences of actions performed on the line. And manual inspection could miss such faults as measurement errors, and colour deviations between batches.

The main concern was the long reaction time in correcting errors. As destructive and discrete analysis of sample panels was practical only a few times each day, faulty panels could go unnoticed until arrival at the construction site, or, worse, after application.

The achievement

The project task teams have created a system that achieves control of disparate parameters, ranging from the type and quality of input materials to the settings and current state of the assembly line. The unified system governs both the speed of production, and, even more importantly, the individual processes that take place on the line.

One of the first development tasks was to write a program for artificial intelligence (AI) – advanced data processing – that could “learn” the manufacturing process by “mining” the records of assembly line parameters. AI proved its value in detecting errors, discovering correlations between parameters, and indicating areas where the process could be improved.

Initial monitoring of the process identified numerous reasons for delays. These reasons fell into three basic categories: organizational demands, processing errors, and inappropriate quality of material. Organisational delays could occur when equipment was re-set for different types of product, during the changeover to other components, and even in the scheduling of workers' rest breaks. Production delays included breakdowns of mechanical equipment, poor line control, and process errors. The human factor proved especially difficult to determine as actions could have indirect influences.

Results and outlook

A prototype system – which was installed without disrupting the factory’s production schedule – is running successfully, but without the AI program. Although AI was central to the initial phase of development, the reliability of the learning algorithms (instruction sequences) needs to be improved, especially concerning the measurement of input material, and the speed of gathering information.

The present system, however, is providing a high degree of control, resulting in a significant increase in productivity with fewer rejects. Viktor Zaletelj, the QSPAI Project Manager at Trimo, says that feedback from continuous monitoring of the entire process enables operators to correct faults almost as soon as they develop, and even to spot potential problems.

“These results have encouraged the participants to continue developing the AI program so that it can be interfaced with the control system’s measurement and data processing capabilities. It is feasible that we can fulfil our original intent to build a system that mostly relies on ‘machine learning’ to maintain quality.”


Story Source:

The above story is based on materials provided by Eureka. Note: Materials may be edited for content and length.


Cite This Page:

Eureka. "‘SMART’ Quality Control System Cuts Risk Of Human Error On Assembly Lines." ScienceDaily. ScienceDaily, 16 December 2008. <www.sciencedaily.com/releases/2008/12/081216114437.htm>.
Eureka. (2008, December 16). ‘SMART’ Quality Control System Cuts Risk Of Human Error On Assembly Lines. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2008/12/081216114437.htm
Eureka. "‘SMART’ Quality Control System Cuts Risk Of Human Error On Assembly Lines." ScienceDaily. www.sciencedaily.com/releases/2008/12/081216114437.htm (accessed September 3, 2014).

Share This



More Computers & Math News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Firm Showcases 'touchable' 3D Technology

Japan Firm Showcases 'touchable' 3D Technology

AFP (Sep. 2, 2014) Technology that generates touchable 3D imagery is unveiled in Japan, with its developers saying users could pull and push objects that are not really there. Duration: 01:07 Video provided by AFP
Powered by NewsLook.com
Why Is This Madden NFL Video Game Character 14 Inches Tall?

Why Is This Madden NFL Video Game Character 14 Inches Tall?

Newsy (Sep. 2, 2014) The newest Madden NFL video game has a few glitches, including a 14-inch player who's actually more than 6 feet tall in real life. Video provided by Newsy
Powered by NewsLook.com
Home Depot Data Breach Could Affect All Stores Nationwide

Home Depot Data Breach Could Affect All Stores Nationwide

Newsy (Sep. 2, 2014) Home Depot is investigating a potentially "massive" data breach that analysts say could be much larger than Target's 40 million leaked card numbers. Video provided by Newsy
Powered by NewsLook.com
Oops! Microsoft Hints At Windows 9 Launch, Rumors Abound

Oops! Microsoft Hints At Windows 9 Launch, Rumors Abound

Newsy (Sep. 2, 2014) Microsoft's Chinese offices may have just named and set a rough date for the company's next operating system, Windows 9. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins