Featured Research

from universities, journals, and other organizations

How Small Can Computers Get? Computing In A Molecule

Date:
December 30, 2008
Source:
ICT Results
Summary:
Over the last 60 years, ever-smaller generations of transistors have driven exponential growth in computing power. Could molecules, each turned into miniscule computer components, trigger even greater growth in computing over the next 60?

Over the last 60 years, ever-smaller generations of transistors have driven exponential growth in computing power. Could molecules, each turned into miniscule computer components, trigger even greater growth in computing over the next 60?

Related Articles


Atomic-scale computing, in which computer processes are carried out in a single molecule or using a surface atomic-scale circuit, holds vast promise for the microelectronics industry. It allows computers to continue to increase in processing power through the development of components in the nano- and pico scale. In theory, atomic-scale computing could put computers more powerful than today’s supercomputers in everyone’s pocket.

“Atomic-scale computing researchers today are in much the same position as transistor inventors were before 1947. No one knows where this will lead,” says Christian Joachim of the French National Scientific Research Centre’s (CNRS) Centre for Material Elaboration & Structural Studies (CEMES) in Toulouse, France.

Joachim, the head of the CEMES Nanoscience and Picotechnology Group (GNS), is currently coordinating a team of researchers from 15 academic and industrial research institutes in Europe whose groundbreaking work on developing a molecular replacement for transistors has brought the vision of atomic-scale computing a step closer to reality. Their efforts, a continuation of work that began in the 1990s, are today being funded by the European Union in the Pico-Inside project.

In a conventional microprocessor – the “motor” of a modern computer – transistors are the essential building blocks of digital circuits, creating logic gates that process true or false signals. A few transistors are needed to create a single logic gate and modern microprocessors contain billions of them, each measuring around 100 nanometres.

Transistors have continued to shrink in size since Intel co-founder Gordon E. Moore famously predicted in 1965 that the number that can be placed on a processor would double roughly every two years. But there will inevitably come a time when the laws of quantum physics prevent any further shrinkage using conventional methods. That is where atomic-scale computing comes into play with a fundamentally different approach to the problem.

“Nanotechnology is about taking something and shrinking it to its smallest possible scale. It’s a top-down approach,” Joachim says. He and the Pico-Inside team are turning that upside down, starting from the atom, the molecule, and exploring if such a tiny bit of matter can be a logic gate, memory source, or more. “It is a bottom-up or, as we call it, 'bottom-bottom' approach because we do not want to reach the material scale,” he explains.

Joachim’s team has focused on taking one individual molecule and building up computer components, with the ultimate goal of hosting a logic gate in a single molecule.

How many atoms to build a computer?

“The question we have asked ourselves is how many atoms does it take to build a computer?” Joachim says. “That is something we cannot answer at present, but we are getting a better idea about it.”

The team has managed to design a simple logic gate with 30 atoms that perform the same task as 14 transistors, while also exploring the architecture, technology and chemistry needed to achieve computing inside a single molecule and to interconnect molecules.

They are focusing on two architectures: one that mimics the classical design of a logic gate but in atomic form, including nodes, loops, meshes etc., and another, more complex, process that relies on changes to the molecule’s conformation to carry out the logic gate inputs and quantum mechanics to perform the computation.

The logic gates are interconnected using scanning-tunnelling microscopes and atomic-force microscopes – devices that can measure and move individual atoms with resolutions down to 1/100 of a nanometre (that is one hundred millionth of a millimetre!). As a side project, partly for fun but partly to stimulate new lines of research, Joachim and his team have used the technique to build tiny nano-machines, such as wheels, gears, motors and nano-vehicles each consisting of a single molecule.

“Put logic gates on it and it could decide where to go,” Joachim notes, pointing to what would be one of the world’s first implementations of atomic-scale robotics.

The importance of the Pico-Inside team’s work has been widely recognised in the scientific community, though Joachim cautions that it is still very much fundamental research. It will be some time before commercial applications emerge from it. However, emerge they all but certainly will.

“Microelectronics needs us if logic gates – and as a consequence microprocessors – are to continue to get smaller,” Joachim says.

The Pico-Inside researchers, who received funding under the ICT strand of the EU’s Sixth Framework Programme, are currently drafting a roadmap to ensure computing power continues to increase in the future.


Story Source:

The above story is based on materials provided by ICT Results. Note: Materials may be edited for content and length.


Cite This Page:

ICT Results. "How Small Can Computers Get? Computing In A Molecule." ScienceDaily. ScienceDaily, 30 December 2008. <www.sciencedaily.com/releases/2008/12/081222113532.htm>.
ICT Results. (2008, December 30). How Small Can Computers Get? Computing In A Molecule. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2008/12/081222113532.htm
ICT Results. "How Small Can Computers Get? Computing In A Molecule." ScienceDaily. www.sciencedaily.com/releases/2008/12/081222113532.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Forensic Holodeck Creates 3D Crime Scenes

Forensic Holodeck Creates 3D Crime Scenes

Reuters - Innovations Video Online (Mar. 3, 2015) A holodeck is no longer the preserve of TV sci-fi classic Star Trek, thanks to researchers from the Institute of Forensic Medicine Zurich, who have created what they say is the first system in the world to visualise the 3D data of forensic scans. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
HP to Buy Aruba Networks in $3B Deal

HP to Buy Aruba Networks in $3B Deal

Reuters - Business Video Online (Mar. 2, 2015) Hewlett-Packard is boosting its mobile computing business... buying California-based Aruba Networks- a wi-fi network gear maker for $24.67 per share. Leah Duncan reports. Video provided by Reuters
Powered by NewsLook.com
Everything You Need To Know About Mobile Payments In 2015

Everything You Need To Know About Mobile Payments In 2015

Newsy (Mar. 2, 2015) This year, mobile payments might finally catch on. Here are the things you need to know to stay on top of the latest developments. Video provided by Newsy
Powered by NewsLook.com
Can Curved Screen Give Samsung the Edge?

Can Curved Screen Give Samsung the Edge?

Reuters - Business Video Online (Mar. 2, 2015) South Korea&apos;s Samsung Electronics Co Ltd unveiled its latest Galaxy S smartphones, featuring a slim body made from aircraft-grade metal, in a bid to reclaim the throne of undisputed global smartphone leader from Apple Inc. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins