Featured Research

from universities, journals, and other organizations

Smallest Possible Switch: Single Gold Atom Forms The Contact

Date:
January 22, 2009
Source:
University of Groningen
Summary:
The smallest mechanical switch plus an electronic switch of a type never seen before. That's how one young physicist sums up the results of his PhD research on electric current through atoms and molecules. "The ultimate aim of nanotechnology is to use molecules for electronics," he says. "That aim has now come a step closer."

Hydrogen switch. Below: picture of a gold wire as used in the research, taken with an electron microscope. Above: a sketch of a hydrogen molecule contacted between two gold wires.
Credit: Image courtesy of University of Groningen

The smallest mechanical switch plus an electronic switch of a type never seen before. That’s how physicist Marius Trouwborst sums up the results of his PhD research on electric current through atoms and molecules. "The ultimate aim of nanotechnology is to use molecules for electronics," he says. "That aim has now come a step closer."

Related Articles


The enormous progress in information technology is mainly related to the fact that the electronic parts in computers are getting smaller and smaller. And smaller automatically means quicker and cheaper. In the past forty years, the number of transistors in a computer chip has doubled every two years. However, in ten years from now we will reach a physical limit, estimates Trouwborst. At this limit, the basic principles of the transistor do not longer work properly.

If we want to continue with making faster computers, new methods have to be discovered. One possibility is to use atoms and molecules. Trouwborst’s fundamental research on electron transport through individual atoms and molecules fits into this hunt.

During the research, Trouwborst developed a new method to organize gold atoms in such a way that a very tiny mechanical switch could be made with them: only a single gold atom forms the contact. In addition, Trouwborst constructed a new type of electronic switch of the same miniscule size.

Chewing gum

The method works with a so-called break junction. First, a gold wire is fixed onto a strip of flexible plastic. By now carefully bending the strip, the gold wire slowly stretches out, just like chewing gum. Just before it breaks, the wire has a diameter of only one gold atom. Extremely careful further bending (at the nanoscale) moves the ends a tiny distance away from each other. Although the wires are now separated, the fracture is is not definitive. As soon as it is very, very carefully bent back into position the ends fuse together again.

Trouwborst repeated this bending back and forth for many times, in a very controlled way. Every time the wire breaks, the atoms in the two ends get organized in a different way. Trouwborst discovered that this reorganization gradually becomes more regular. Finally, the points look like carefully stacked pyramids of billiard balls with a single atom at the apex. "By moving the two ends back and forth by a distance of 0.1 nanometre, the switch can be turned on and off," says Trouwborst.

Captured molecule

Moreover, the system can also be used to ‘catch’ a molecule between the ends. That is useful for studying the electronic characteristics of that molecule. When an electrical voltage is set over the ends, all the electron transport goes through that single molecule in the middle.

Trouwborst used hydrogen molecules for his research. When increasing the voltage, the hydrogen molecule starts to vibrate between the ends of the gold threads. Trouwborst discovered that the resistance then suddenly changes, it jumps down. "You can simply turn the system on or off by making the molecules vibrate or not," says Trouwborst. "This type of switch has never been shown before."

Unknown cause

Although related to the vibrating molecules, the exact cause of this switching behaviour is still unknown. Trouwborst suspects that is has something to do with a phase transition. More research is needed before the switches can actually be used. However, "what is clear," says Trouwborst, "is that it provides new insight on the road to using molecules as functional building elements in the electronics of the future."


Story Source:

The above story is based on materials provided by University of Groningen. Note: Materials may be edited for content and length.


Cite This Page:

University of Groningen. "Smallest Possible Switch: Single Gold Atom Forms The Contact." ScienceDaily. ScienceDaily, 22 January 2009. <www.sciencedaily.com/releases/2009/01/090121091220.htm>.
University of Groningen. (2009, January 22). Smallest Possible Switch: Single Gold Atom Forms The Contact. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2009/01/090121091220.htm
University of Groningen. "Smallest Possible Switch: Single Gold Atom Forms The Contact." ScienceDaily. www.sciencedaily.com/releases/2009/01/090121091220.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins