Featured Research

from universities, journals, and other organizations

Engineer Develops Method To Combat Congenital Heart Disease In Children

Date:
February 18, 2009
Source:
University of California - San Diego
Summary:
Mechanical and aerospace engineers have developed a unique set of computer modeling tools that are expected to enhance pediatric surgeons' ability to perform heart surgery on children.

Alison Marsden, a UC San Diego mechanical and aerospace engineering professor, has developed breakthrough simulation tools to assist pediatric heart surgeons.
Credit: Image courtesy of University of California - San Diego

Congenital heart defects account for five times more deaths annually than all childhood cancers combined. Alison Marsden, an assistant mechanical and aerospace engineering professor at the University of California, has developed a unique set of computer modeling tools that are expected to enhance pediatric surgeons’ ability to perform critical heart surgery on children.

Marsden’s work focuses on designing and using simulation tools to provide a way of testing new surgery designs on the computer before trying them on patients, much like, for example, engineers use computer codes to test new designs for airplanes or automobiles. Certain severe formsof congenital heart defects leave a patient with only one functional heart pumping chamber. These “singleventricle” defects are uniformly fatal if left untreated, and require a patient to undergo multiple heart surgeries,ending with a Fontan procedure.

In the Fontan surgery the veinsreturning blood to the heart from the body are directly connected to the arteries that send deoxygenatedblood to the lungs, forming a modified t-shaped junction. This bypasses the heart on the one side so thatthe resulting circulation puts the single pumping chamber to optimal use. Using models derived from MRI image data, Marsden has come with a way to optimize a Y-Graft model for the Fontan procedure which can help pediatric surgeons determine whether this procedure will benefit a patient, as well as and determine how a patient’s heart will perform during moderate exercise.

An advantage of Marsden’s proposed Y-Graft design is that it can be optimized or modified for an individual patient by custom manufacturing the graft portion prior to surgery.

“Our goal is to provide a set of personalized tools that can be used in collaboration with surgeons to identity the best procedure for patients,” Marsden said.

Pediatric surgeons at Stanford University plan to use Marsden’s Y-Graft computer models for a Fontan procedure for the first time later this year. One of the pediatric cardiologists working with Marsden is Dr. Jeff Feinstein,an associate professor of Pediatrics (Cardiology) at Stanford University with a specialization in interventional cardiology, and director of the Vera Moulton Wall Center for Pulmonary Vascular Disease at Stanford.

“Alison’s work enables us to look at things we can’t look at in any other way,” Feinstein said. “The whole concept of simulation based medicine offers opportunities to try things with zero risk to the patients. With this type of computer modeling, you can do 100 simulations before you ever try it in a patient.”

Marsden has also been working with Dr. John Lamberti,a professor in the Department of Surgery at the UC San Diego School of Medicine. “The research Alison is doing is very relevant to the treatment of the most complex forms of congenial heart disease,” said Lamberti, also a pediatric cardiac surgeon and Director of the Heart Institute at Rady Children’s Hospital. “This type of computer modeling could provide a patient with better long term cardiac performance and better exercise tolerance particularly during the teenage years and into adulthood when conventional-type Fontan procedures begin to fail.”

Part of Marsden’s work on the Y-Graft includes increasing flow rates to simulate exercise. “These simulations allow us to obtain information that is difficult to measure in the clinic,” Marsden said . “This way we can design something that would allow a patient to perform well at rest but also during exercise."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marsden et al. Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. The Journal of Thoracic and Cardiovascular Surgery, 2009; 137 (2): 394 DOI: 10.1016/j.jtcvs.2008.06.043

Cite This Page:

University of California - San Diego. "Engineer Develops Method To Combat Congenital Heart Disease In Children." ScienceDaily. ScienceDaily, 18 February 2009. <www.sciencedaily.com/releases/2009/02/090209152418.htm>.
University of California - San Diego. (2009, February 18). Engineer Develops Method To Combat Congenital Heart Disease In Children. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/02/090209152418.htm
University of California - San Diego. "Engineer Develops Method To Combat Congenital Heart Disease In Children." ScienceDaily. www.sciencedaily.com/releases/2009/02/090209152418.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins