Featured Research

from universities, journals, and other organizations

How Do You Build A Synthetic Brain?

February 12, 2009
University of Southern California
Nanocarbon modeling may be the next step toward emulating human brain function. That's the focus of a "synthetic cortex" under development.

Professor Alice Parker, left, discusses the animation of a synaptic connector with graduate students Chih-Chieh Hsu, center, and Jonathan Joshi.
Credit: Diane Ainsworth

Nanocarbon modeling may be the next step toward emulating human brain function. That’s the focus of USC electrical engineering professor Alice Parker’s “synthetic cortex” study funded by the National Science Foundation.

Related Articles

Parker and co-principal investigator Chongwu Zhou, both of the USC Viterbi School’s Ming Hsieh Department of Electrical Engineering, have teamed up on the “BioRC (Biomimetic Real-Time Cortex) Project,” which has set out to create nanocarbon brain neurons that can talk to each other.

The research team includes USC Viterbi School electrical engineering graduate students Jonathan Joshi, Chih-Chieh Hsu, Adi Azar, Matthew Walker, Ko-Chung Tseng, Ben Raskob, Chuan Wang, Yoon Sik Cho, Changsoo Jeong and Jason Mahvash.

The team is studying the behavior of cortical neurons – what makes them fire and send signals through synaptic connectors to other neurons in the human cortex – as well as the neurons’ “plasticity,” or ability to learn and remember.

Each time a neuron fires, it sends an electro-chemical spark through thousands of other neurons at speeds of up to 200 miles per hour. But with approximately 100 billion neurons in the human cortex and approximately 60 trillion synaptic connections, the brain is massively interconnected, Parker said. That makes the task of unraveling a neuron’s electrical circuitry quite complicated.

“The brain is kind of like a biochemical factory, operating in a sphere that you can’t stretch out on integrated circuits and circuit boards in order to emulate all of its electrical activity,” she said. “The connectivity is too great and too many delays are introduced. We had to turn to nanotechnology to build something three-dimensionally, so that eventually we’ll be able to emulate how the neurons fire and activate others along a specific path within that sphere.”

According to Joshi, who has engineered the circuit design for artificial synapses that learn, “This is a big departure from some previous synthetic brain projects, which attempted to emulate neural behavior with electrical signals using conventional multiprocessors.

“Nanocarbon modeling solves problems such as the sheer physical size in building a section of synthetic cortex, the cost of expensive electronics that have been required in the past to build these structures and then the cost of powering them, since the brain never shuts off.”

Until quite recently, the size and cost of available electronics made construction of complex brain-like structures totally impractical, Parker said.

The team already has designed and simulated the transistor circuits for a single synapse, said Hsu, a senior member of the team and Ph.D. student in electrical engineering. In addition, a complementary metal oxide semiconductor chip that will be used to validate the concepts is about to be fabricated. Now it’s time to connect the structure to another synapse and study neural interconnectivity. By the end of the semester, she hopes to have “several synthetic neurons talking to each other.”

Ultimately, the researchers hope to answer one question: Will science ever be able to construct an artificial brain of reasonable size and cost that exhibits almost real-time behavior?

“We really don’t know if we can yet, despite all of the press that you’ve seen claiming how close we are to that,” Parker said. “The human cortex is massively interconnected and the connections are always changing. That’s always been one of the biggest hurdles in trying to simulate neural functioning. But as technologies become smaller and less expensive, there is a possibility of constructing neural structures on the scale of the human brain.”

A lot is riding on it, she added. Autonomous vehicle navigation, identity determination, robotic manufacturing and medical diagnostics are engineering challenges that could benefit from technological solutions that involve artificial neural structures.

And in medicine, the stakes are even higher.

“Researchers have already built experimental cochlear implants that are able to restore some hearing in the deaf and new vision systems that can restore some sight to the blind, but what we’re working on now is what you’ll see 30 years in the future,” Parker said. “This is work that could revolutionize neural prosthetics, for one thing, and give us some pretty amazing biomimetic devices.”

The project also involves collaborators Kang Wang, Alex Khitun and Mary Eshaghian-Wilner at UCLA, Philip Wong at Stanford University and Jie Deng at IBM, as well as neuroscience faculty members at USC.

Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.

Cite This Page:

University of Southern California. "How Do You Build A Synthetic Brain?." ScienceDaily. ScienceDaily, 12 February 2009. <www.sciencedaily.com/releases/2009/02/090211194151.htm>.
University of Southern California. (2009, February 12). How Do You Build A Synthetic Brain?. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2009/02/090211194151.htm
University of Southern California. "How Do You Build A Synthetic Brain?." ScienceDaily. www.sciencedaily.com/releases/2009/02/090211194151.htm (accessed February 27, 2015).

Share This

More From ScienceDaily

More Mind & Brain News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins