Featured Research

from universities, journals, and other organizations

MIT Battery Material Could Lead To Rapid Recharging Of Many Devices

Date:
March 16, 2009
Source:
Massachusetts Institute of Technology
Summary:
MIT engineers have created a kind of beltway that allows for the rapid transit of electrical energy through a well-known battery material, an advance that could usher in smaller, lighter batteries -- for cell phones and other devices -- that could recharge in seconds rather than hours.

A sample of the new battery material that could allow quick charging of portable devices.
Credit: Donna Coveney/MIT

MIT engineers have created a kind of beltway that allows for the rapid transit of electrical energy through a well-known battery material, an advance that could usher in smaller, lighter batteries — for cell phones and other devices — that could recharge in seconds rather than hours.

The work could also allow for the quick recharging of batteries in electric cars, although that particular application would be limited by the amount of power available to a homeowner through the electric grid.

The work, led by Gerbrand Ceder, the Richard P. Simmons Professor of Materials Science and Engineering, is reported in the March 12 issue of Nature. Because the material involved is not new — the researchers have simply changed the way they make it — Ceder believes the work could make it into the marketplace within two to three years.

State-of-the-art lithium rechargeable batteries have very high energy densities — they are good at storing large amounts of charge. The tradeoff is that they have relatively slow power rates — they are sluggish at gaining and discharging that energy. Consider current batteries for electric cars. "They have a lot of energy, so you can drive at 55 mph for a long time, but the power is low. You can't accelerate quickly," Ceder said.

Why the slow power rates? Traditionally, scientists have thought that the lithium ions responsible, along with electrons, for carrying charge across the battery simply move too slowly through the material.

About five years ago, however, Ceder and colleagues made a surprising discovery. Computer calculations of a well-known battery material, lithium iron phosphate, predicted that the material's lithium ions should actually be moving extremely quickly.

"If transport of the lithium ions was so fast, something else had to be the problem," Ceder said.

Further calculations showed that lithium ions can indeed move very quickly into the material but only through tunnels accessed from the surface. If a lithium ion at the surface is directly in front of a tunnel entrance, there's no problem: it proceeds efficiently into the tunnel. But if the ion isn't directly in front, it is prevented from reaching the tunnel entrance because it cannot move to access that entrance.

Ceder and Byoungwoo Kang, a graduate student in materials science and engineering, devised a way around the problem by creating a new surface structure that does allow the lithium ions to move quickly around the outside of the material, much like a beltway around a city. When an ion traveling along this beltway reaches a tunnel, it is instantly diverted into it. Kang is a coauthor of the Nature paper.

Using their new processing technique, the two went on to make a small battery that could be fully charged or discharged in 10 to 20 seconds (it takes six minutes to fully charge or discharge a cell made from the unprocessed material).

Ceder notes that further tests showed that unlike other battery materials, the new material does not degrade as much when repeatedly charged and recharged. This could lead to smaller, lighter batteries, because less material is needed for the same result.

"The ability to charge and discharge batteries in a matter of seconds rather than hours may open up new technological applications and induce lifestyle changes," Ceder and Kang conclude in their Nature paper.

This work was supported by the National Science Foundation through the Materials Research Science and Engineering Centers program and the Batteries for Advanced Transportation Program of the U.S. Department of Energy. It has been licensed by two companies.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Byoungwoo Kang & Gerbrand Ceder. Battery materials for ultrafast charging and discharging. Nature, 2009; 458 (7235): 190 DOI: 10.1038/nature07853

Cite This Page:

Massachusetts Institute of Technology. "MIT Battery Material Could Lead To Rapid Recharging Of Many Devices." ScienceDaily. ScienceDaily, 16 March 2009. <www.sciencedaily.com/releases/2009/03/090311153408.htm>.
Massachusetts Institute of Technology. (2009, March 16). MIT Battery Material Could Lead To Rapid Recharging Of Many Devices. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/03/090311153408.htm
Massachusetts Institute of Technology. "MIT Battery Material Could Lead To Rapid Recharging Of Many Devices." ScienceDaily. www.sciencedaily.com/releases/2009/03/090311153408.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins