Featured Research

from universities, journals, and other organizations

Immune Cells Play Surprising Role In Cystic Fibrosis Lung Damage

Date:
March 20, 2009
Source:
Stanford University Medical Center
Summary:
Immune cells once thought to be innocent bystanders in cystic fibrosis may hold the key to stopping patients' fatal lung disease. New findings show that white blood cells called neutrophils respond strongly to conflicting signals from cystic fibrosis patients' lungs, setting up a molecular fracas that may explain the patients' severe lung damage.

Immune cells once thought to be innocent bystanders in cystic fibrosis may hold the key to stopping patients' fatal lung disease. New findings from the Stanford University School of Medicine and Lucile Packard Children's Hospital show that white blood cells called neutrophils respond strongly to conflicting signals from cystic fibrosis patients' lungs, setting up a molecular fracas that may explain the patients' severe lung damage.

"Cystic fibrosis patients have a problem with turning down the inflammatory response in the lungs," said senior study author Rabindra Tirouvanziam, PhD, an instructor in pediatric pulmonary medicine. "We've found that patients' neutrophils become kind of schizophrenic, doing a number of things that are opposite to the textbook view of neutrophils' role."

The research, which will be published online March 23 in the Proceedings of the National Academy of Sciences, opens up new targets for cystic fibrosis treatment, Tirouvanziam said.

Cystic fibrosis is a genetic disease of the lungs and digestive system that affects about 30,000 people in the United States. Patients used to die in childhood, but the life expectancy for a child born today with cystic fibrosis is now 50 to 60 years. Although modern medications and dietary treatments do a good job of controlling the digestive aspects of the disease, patients still suffer serious lung problems. Thick, sticky mucus builds up in their lungs, and chronic inflammation and bacterial infections lead to the breakdown of lung tissue.

For years, scientists believed that cystic fibrosis patients' lung problems started when bacteria became trapped in the excess mucus in their lungs. Neutrophils showed up at the lungs in response to the invasive bacteria, the thinking went. Neutrophils are supposed to engulf and destroy bacteria, but something went wrong and the neutrophils quickly died in the lung, releasing tissue-destroying enzymes, scientists thought.

"This paradigm makes sense in a superficial way, but it has very little to do with clinical reality," Tirouvanziam said. Careful clinical testing in infants with cystic fibrosis has shown that lung inflammation with neutrophils occurs even in the absence of detectable infection. And Tirouvanziam's earlier research showed the immune cells stay alive in the lung for quite a while after they arrive.

So what are the live neutrophils doing in patients' lungs? The new findings surprised Tirouvanziam's team. After collecting fresh neutrophils from cystic fibrosis patients' sputum and analyzing them with fluorescence-activated cell sorting, the team discovered that signals from the patients' lung tissue were reprogramming live neutrophils with conflicting messages. The first set of signals switches on what Tirouvanziam calls "an ancient happiness pathway" — a chain of commands that tell the neutrophils that nutrients are plentiful, and that it's a good time to translate the cell's library of genes into new protein. The second pathway is a cellular alarm system associated with inflammation and stress.

"They're receiving a lot of signals at same time, and we think the happiness signals are messing them up completely," Tirouvanziam said.

His team now suspects the inappropriate activation of the "happiness signal" — the molecular target of rapamycin, or mTOR, cell signaling pathway — may trigger neutrophils to release large quantities of human neutrophil elastase, the enzyme that destroys the elastic fiber of lung tissue. In healthy individuals, neutrophils never release destructive human neutrophil elastase into nearby tissue.

Understanding the sequence of events that release the tissue-chewing enzyme in cystic fibrosis is important, Tirouvanziam said, because it could help researchers find new disease therapies. Drugs now given to improve patients' lung function target symptoms such as difficulty breathing, but don't do anything to alter neutrophils' behavior. Tirouvanziam hopes that will soon change.

The Stanford research team included research assistants Megha Makam and Daisy Diaz; graduate student Julie Laval; postdoctoral scholar Yael Gernez, MD; associate professor of pediatrics and director of the pediatric lung and heart-lung transplant program Carol Conrad, MD; research coordinators Colleen Dunn and Zoe Davies; professor of pediatrics Richard Moss, MD; professor emeritus of genetics Leonard Herzenberg, PhD; and professor of genetics Leonore Herzenberg, PhD. The research was funded by grants from the Cystic Fibrosis Foundation, the Stanford SPARK Program, the Stanford Center for Clinical and Translational Education and Research Program and the Skippy and Sidney Frank Foundation.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Immune Cells Play Surprising Role In Cystic Fibrosis Lung Damage." ScienceDaily. ScienceDaily, 20 March 2009. <www.sciencedaily.com/releases/2009/03/090316173220.htm>.
Stanford University Medical Center. (2009, March 20). Immune Cells Play Surprising Role In Cystic Fibrosis Lung Damage. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2009/03/090316173220.htm
Stanford University Medical Center. "Immune Cells Play Surprising Role In Cystic Fibrosis Lung Damage." ScienceDaily. www.sciencedaily.com/releases/2009/03/090316173220.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Fauci: Ebola Protocols to Focus on Training

Fauci: Ebola Protocols to Focus on Training

AP (Oct. 20, 2014) Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases, says he expects revised CDC protocols on Ebola to focus on training, observation and ensuring health care workers are more protected. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins