Featured Research

from universities, journals, and other organizations

Novel Spinal Cord Stimulator Sparks Hope For Parkinson's Disease Treatment

Date:
March 21, 2009
Source:
Duke University Medical Center
Summary:
A novel stimulation method, the first potential therapy to target the spinal cord instead of the brain, may offer an effective and less invasive approach for Parkinson's disease treatment, according to pre-clinical data published in the journal Science.

A novel stimulation method, the first potential therapy to target the spinal cord instead of the brain, may offer an effective and less invasive approach for Parkinson's disease treatment, according to pre-clinical data published in the journal Science by researchers at Duke University Medical Center.

Researchers developed a prosthetic device that applies electrical stimulation to the dorsal column in the spinal cord, which is a main sensory pathway carrying tactile information from the body to the brain. The device was attached to the surface of the spinal cord in mice and rats with depleted levels of the chemical dopamine – mimicking the biologic characteristics of someone with Parkinson's disease along with the impaired motor skills seen in advanced stages of the disease.

When the device was turned on, the dopamine-depleted animals' slow, stiff movements were replaced with the active behaviors of healthy mice and rats. Improved movement was typically observed within 3.35 seconds after stimulation.

"We see an almost immediate and dramatic change in the animal's ability to function when the device stimulates the spinal cord," says senior study investigator Miguel Nicolelis, M.D., Ph.D., the Anne W. Deane Professor of Neuroscience at Duke. "Moreover, it is easy to use, significantly less invasive than other alternatives to medication, such as deep brain stimulation, and has the potential for widespread use in conjunction with medications typically used to treat Parkinson's disease."

Researchers tested mice and rats with acute and chronic dopamine deficit using varying levels of electrical stimulation and in combination with different doses of dopamine replacement therapy, also known as 3,4-dihydroxy-L-phenylalanine or L-DOPA, to determine the most effective pairing.

When the device was used without additional medication, Parkinsonian animals were 26 times more active. When stimulation was coupled with medication, only two L-DOPA doses were needed to produce movement compared to five doses when the medication was used by itself.

"This work addresses an important need because people living with Parkinson's disease face a difficult reality – L-Dopa will eventually stop managing the symptoms," explains Romulo Fuentes, a postdoctoral fellow at Duke University and lead author of the study. "Patients are left with few options for treatment, including electrical stimulation of the brain, which is appropriate for only a subset of patients."

While deep brain stimulation (DBS) and other experimental treatments attack the disease at its origin – in the brain – Nicolelis and team took a different approach. The concept for the device began when researchers made a surprising connection with another neurological condition.

"It was a moment of sudden insight," explains Nicolelis. "We were analyzing the brain activity of mice with Parkinson's disease and suddenly it reminded me of some research I'd done in the epilepsy field a decade earlier. The ideas began to flow from there."

The rhythmic brain activity in the animals with Parkinson's disease resembled the mild, continuous, low-frequency seizures that are seen in those with epilepsy. One effective therapy for treating epilepsy involves stimulating the peripheral nerves, which facilitate communication between the spinal cord and the body. Researchers took that concept and developed a modified approach for a Parkinson's disease model.

Nicolelis says that the low frequency seizures, or oscillations, seen in the animal model of Parkinson's disease have been observed in humans with the condition. Stimulating the dorsal column of the spinal cord reduces these oscillations, which researchers believe creates the ability to produce motor function.

In a healthy body, neurons fire at varying rates as information is transmitted between the brain and the body to initiate normal movement. This process breaks down in someone with Parkinson's disease.

"Our device works as an interface with the brain to produce a neural state permissive for locomotion, facilitating immediate and dramatic recovery of movement," says Per Petersson, co-author of the study. "Following stimulation, the neurons desynchronize, similar to the firing pattern that you would see when a healthy mouse is continuously moving."

Nicolelis says that if the device is proven safe and effective through further research, he imagines it mirroring similar spinal cord stimulator technology currently used to treat chronic pain. Small leads are implanted over the spinal cord and then connected to a portable generator, a small device capable of producing mild electrical currents. During the trial period, the generator is external, while for permanent treatment it would be implanted below the skin.

"If we can demonstrate that the device is safe and effective over the long term in primates and then humans, virtually every patient could be eligible for this treatment in the near future," Nicolelis said.

The Duke team is collaborating with neuroscientists at the Edmond and Lily Safra International Institute of Neuroscience in Natal, Brazil, to test the new procedure in primate models of Parkinson's disease prior to initiating clinical studies. Neuroscientists from the Brain and Mind Institute at the Swiss Institute of Technology (EPFL), in Lausanne, Switzerland, will also participate in this international research effort to translate these new findings into clinical practice.

Study co-authors include William Siesser and Marc Caron.

Funding for this research was provided by grants from the National Institutes of Neurological Disorders and Stroke (NINDS), International Neuroscience Network Foundation (INNF) and the Anne W. Deane Endowed Chair.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Novel Spinal Cord Stimulator Sparks Hope For Parkinson's Disease Treatment." ScienceDaily. ScienceDaily, 21 March 2009. <www.sciencedaily.com/releases/2009/03/090319142357.htm>.
Duke University Medical Center. (2009, March 21). Novel Spinal Cord Stimulator Sparks Hope For Parkinson's Disease Treatment. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2009/03/090319142357.htm
Duke University Medical Center. "Novel Spinal Cord Stimulator Sparks Hope For Parkinson's Disease Treatment." ScienceDaily. www.sciencedaily.com/releases/2009/03/090319142357.htm (accessed April 19, 2014).

Share This



More Health & Medicine News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins