Featured Research

from universities, journals, and other organizations

Targeting Oxidized Cysteine Through Diet Could Reduce Inflammation And Lower Disease Risk

Date:
March 31, 2009
Source:
Emory University
Summary:
High levels of oxidized cysteine in the blood drive white blood cells to send out inflammatory messages, providing a direct link between a key marker of oxidative stress and inflammation. Targeting cysteine with antioxidants could reduce inflammation, which contributes to heart disease and neurodegenerative diseases. Adding cysteine to specialized nutrition formulations could reduce the impact of inflammation and sepsis in critical care patients.

A team of scientists at Emory University School of Medicine has identified a direct link between oxidative stress and inflammatory signals in the blood. The finding could lead to improved strategies for preventing several diseases by including antioxidants in the diet and for reducing the impact of inflammation in critically ill patients by adding cysteine to intravenous or tube feeding.

Many normal metabolic functions produce reactive forms of oxygen that can damage cells. Oxidative stress, a disruption of the body's ability to control reactive forms of oxygen, has been connected with heart disease, diabetes and several neurodegenerative diseases.

However, scientists are still learning about the best ways to measure and reduce oxidative stress, says Dean P. Jones, PhD, professor of medicine and director of the Clinical Biomarkers Laboratory at Emory University School of Medicine. For example, large-scale clinical trials have shown little benefit in supplementing the diet with antioxidants such as vitamins C and E.

Jones and his colleagues, including Thomas R. Ziegler, MD of the Emory Department of Medicine, have been concentrating on a measure of oxidative stress in the blood: cysteine, an amino acid found in most proteins in the body. Cysteine can exist in two forms: oxidized and reduced. The higher the level of oxidative stress outside the cell, the more oxidized cysteine there is. Other indicators such as glutathione are more important inside cells.

Several studies have shown that levels of oxidized cysteine in the blood tend to rise as people age. Smoking and alcohol consumption are also linked with higher levels of oxidized cysteine. In addition, Jones and Ziegler have found that critical illness and malnutrition are associated with oxidative stress and oxidized cysteine in the blood.

Working with Jones, graduate student Smita Iyer and immunologist Mauricio Rojas, MD, found that a high level of oxidized cysteine drives white blood cells to send out inflammatory messages in the form of the protein IL-1 beta.

The researchers used a mouse model of sepsis to test the effects of dietary cysteine on reducing inflammation. They treated the mice with LPS, which mimics the inflammatory effect of bacteria on the human immune system and causes an increase in the level of IL-1 beta. When they supplemented the diet of the mice with cysteine, however, IL-1 beta levels dropped, thus blunting the impact of a sepsis-like inflammation.

In a subsequent study of healthy, but overweight adult volunteers with an average age of 62, IL-1 beta levels also rose and fell in association with the amount of dietary cysteine.

"Our research shows a direct mechanistic link between the oxidative stress biomarker (cysteine redox potential) and pro-inflammatory cytokines, which have been linked to multiple age-related and chronic diseases," says Jones. "Our group and others have already established that cysteine redox potential is oxidized with aging and with a number of health risk factors. This suggests that one could target cysteine redox potential as a means to decrease chronic proinflammatory signaling as an intervention for age-related diseases and for the acute inflammation of sepsis or lung injury."

The researchers plan to continue studying the relationship between cysteine and markers of inflammation in different age groups, in overweight and normal weight individuals and in critically ill patients requiring intravenous feeding.

The research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cysteine Redox Potential Determines Pro-Inflammatory IL-1b Levels. PLoS One, March 27, 2009

Cite This Page:

Emory University. "Targeting Oxidized Cysteine Through Diet Could Reduce Inflammation And Lower Disease Risk." ScienceDaily. ScienceDaily, 31 March 2009. <www.sciencedaily.com/releases/2009/03/090327112541.htm>.
Emory University. (2009, March 31). Targeting Oxidized Cysteine Through Diet Could Reduce Inflammation And Lower Disease Risk. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/03/090327112541.htm
Emory University. "Targeting Oxidized Cysteine Through Diet Could Reduce Inflammation And Lower Disease Risk." ScienceDaily. www.sciencedaily.com/releases/2009/03/090327112541.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins