Featured Research

from universities, journals, and other organizations

Improving The Catalytic Converters Of Motor Vehicles

Date:
June 2, 2009
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
The chemical mechanism that occurs on the surface of an automotive catalytic converter has been deciphered thanks to an observation speed record. This performance has made it possible to characterize this key step in the reaction that ensures pollutant removal by automotive converters. The challenge is indeed considerable: to obtain a clearer understanding of the mechanisms of removal catalysts in order to improve converters and other catalysts used by the automotive industry.

The chemical mechanism that occurs on the surface of an automotive catalytic converter has been deciphered thanks to an observation speed record established by Frédéric Thibault-Strarzyk at the Laboratoire Catalyse et Spectrochimie in Caen (CNRS-Ensicaen).

This performance, achieved in collaboration with the University of Cambridge, has made it possible to characterize this key step in the reaction that ensures pollutant removal by automotive converters. The challenge is indeed considerable: to obtain a clearer understanding of the mechanisms of removal catalysts in order to improve converters and other catalysts used by the automotive industry.

These results were published in Science on May 22, 2009.

A catalytic converter included in a vehicle's exhaust system is a solid element that converts the toxic gases generated by the engine into a mixture of inoffensive gases. Although these catalysts are widely employed, their chemical mechanisms have hitherto been poorly understood.

In addition to improving catalytic converters, this observation technique will also help to understand many of the other pollutant removal systems used by industry.

The observation of very fleeting types of catalysts in the context of these mechanisms is particularly challenging. Until now, the most rapid observations of the surface of these catalysts using infrared methods were around one-tenth of a second.

A novel combination of observation methods has now reduced the duration of observations by a factor of one million.

This manipulation was achieved using a femtosecond laser which was focused on the surface of the solid catalyst made up of silver nanoparticles on an alumina substrate and placed in an atmosphere of toxic gases, thus recreating the conditions of a converter in an exhaust system. As soon as the reaction was triggered by the laser beam, an infrared spectrometer analyzed the surface of the catalyst at a rate of 30 million observations per second. The key intermediate step in the removal reaction was thus observed for the first time and consisted in a cyanide flip between the silver nanoparticles and the substrate. This molecular flip only lasted 2 microseconds and indeed explains how the removal catalyst functions.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Frédéric Thibault-Starzyk, Etienne Seguin, Sébastien Thomas, Marco Daturi, Heike Arnolds, and David A. King. Real-Time Infrared Detection of Cyanide Flip on Silver-Alumina NOx Removal Catalyst. Science, 2009; 324 (5930): 1048 DOI: 10.1126/science.1169041

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Improving The Catalytic Converters Of Motor Vehicles." ScienceDaily. ScienceDaily, 2 June 2009. <www.sciencedaily.com/releases/2009/05/090529075000.htm>.
CNRS (Délégation Paris Michel-Ange). (2009, June 2). Improving The Catalytic Converters Of Motor Vehicles. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/05/090529075000.htm
CNRS (Délégation Paris Michel-Ange). "Improving The Catalytic Converters Of Motor Vehicles." ScienceDaily. www.sciencedaily.com/releases/2009/05/090529075000.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins