Featured Research

from universities, journals, and other organizations

Secret Of Sandcastle Construction Could Help Revive Ancient Building Technique, Researchers Say

Date:
June 3, 2009
Source:
Durham University
Summary:
The secret of a successful sandcastle could aid the revival of an ancient eco-friendly building technique, according to new research.

The monastery in Kagbeni, in the Buddhist kingdom of Mustang, Nepal. The monastery was established in 1429.
Credit: Copyright Paul Jaquin/Durham University

The secret of a successful sandcastle could aid the revival of an ancient eco-friendly building technique, according to research led by Durham University.

Researchers, led by experts at Durham's School of Engineering, have carried out a study into the strength of rammed earth, which is growing in popularity as a sustainable building method.

Just as a sandcastle needs a little water to stand up, the Durham engineers found that the strength of rammed earth was heavily dependent on its water content.

Rammed earth is a manufactured material made up of sand, gravel and clay which is moistened and then compacted between forms to build walls. Sometimes stabilisers such as cement are added but the Durham research focussed on unstabilised materials.

The research, funded by the Engineering and Physical Sciences Research Council (EPSRC) and published in the journal Geotechnique, showed that a major component of the strength of rammed earth was due to the small amount of water present.

Small cylindrical samples of rammed earth underwent "triaxial testing" – where external pressures are applied to model behaviour of the material in a wall. The researchers found that the suction created between soil particles at very low water contents was a source of strength in unstabilised rammed earth.

They showed that rammed earth walls left to dry after construction, in a suitable climate, could be expected to dry but not lose all their water. The small amount of water remaining provided considerable strength over time.

The researchers say their work could have implications for the future design of buildings using rammed earth as the link between strength and water content becomes clearer.

There is increasing interest in using the technique as it may help reduce reliance on cement in building materials (cement production being responsible for five per cent of man's CO2 output (1)). Rammed earth materials can usually also be sourced locally, thereby reducing transport needs.

As well as informing new build designs the team hopes their findings could also aid the conservation of ancient rammed earth buildings by putting methods in place to protect against too much water entering a structure, which would reduce its strength. Paul Jaquin, a researcher on the project is now working for an engineering consultancy (Ramboll, UK) on new earth building projects around the world, using this research to better engineer buildings.

Research project leader, Dr Charles Augarde, of Durham University's School of Engineering, said: "We know that rammed earth can stand the test of time but the source of its strength has not been understood properly to date.

"Without this understanding we cannot effectively conserve old rammed earth or make economic designs for new build.

"Our initial tests point to its main source of strength being linked to its water content.

"By understanding more about this we can begin to look at the implications for using rammed earth as a green material in the design of new buildings and in the conservation of ancient buildings that were constructed using the technique."

Rammed earth was developed in ancient China around 2,000 years before Christ, when people used the technique to build walls around their settlements and the technique spread throughout the world - as documented in another recent publication by the researchers linking up with Dr Chris Gerrard, of the Department of Archaeology, at Durham University (*).

Parts of the Great Wall of China and the Alhambra at Granada in Spain were built using rammed earth.

In the UK the technique was used to build experimental low cost housing, in Amesbury, Wiltshire, following the end of the First World War, and it is a recognised building method in parts of Australia and the USA.

The popularity of eco-friendly homes showcased on television programmes such as Grand Designs has also brought the technique to people's attention.

Dr Augarde is a co-director of Earth Building UK (EBUK), a new association established this year to foster the conservation, understanding and development of building with earth in the United Kingdom.

EBUK brings together builders, academics, researchers, architects, engineers, manufacturers and many more to work in areas of common interest at a national and local level.

Tom Morton, Secretary of Earth Building UK, said: "This kind of research is very valuable as the construction industry analyses environmentally sound, traditional ways of building and adapts them for sustainable construction in the 21st century.

"Such low-carbon technologies are most likely to succeed by marrying the expertise of our research universities, such as Durham, with the commercial understanding of the wider industry and we are seeing a number of very exciting developments in this area.


Story Source:

The above story is based on materials provided by Durham University. Note: Materials may be edited for content and length.


Journal Reference:

  1. P.A. Jaquin, C.E. Augarde, D. Gallipoli, D.G. Toll. The strength of unstabilised rammed earth materials. Gιotechnique, 2009; 0 (0): 090505015147034 DOI: 10.1680/geot.2007.00129

Cite This Page:

Durham University. "Secret Of Sandcastle Construction Could Help Revive Ancient Building Technique, Researchers Say." ScienceDaily. ScienceDaily, 3 June 2009. <www.sciencedaily.com/releases/2009/06/090602192559.htm>.
Durham University. (2009, June 3). Secret Of Sandcastle Construction Could Help Revive Ancient Building Technique, Researchers Say. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/06/090602192559.htm
Durham University. "Secret Of Sandcastle Construction Could Help Revive Ancient Building Technique, Researchers Say." ScienceDaily. www.sciencedaily.com/releases/2009/06/090602192559.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins