Featured Research

from universities, journals, and other organizations

New Brain Receptor Identified as Possible Target For Alzheimer's Treatment

Date:
July 20, 2009
Source:
St. Joseph's Hospital and Medical Center
Summary:
Researchers have identified a novel receptor in the brain that is extremely sensitive to beta-amyloid peptide and may play a key role in early stages of Alzheimer's disease.

Barrow Neurological Institute researchers have identified a novel receptor in the brain that is extremely sensitive to beta-amyloid peptide (AB) and may play a key role in early stages of Alzheimer's disease.

Published in the Journal of Neuroscience, the research lead by Jie Wu, MD, PhD, has identified a new candidate for therapeutic intervention in Alzheimer's.

The novel receptor was found in the basal forebrain, an area of the brain that plays a critical role in memory and learning and is one of the first areas of the brain to degenerate with Alzheimer's. That degeneration is associated with losses of the chemical messenger, acetylcholine, and some of the molecules that translate acetylcholine's messages, called nicotinic receptors. The forming of large aggregates or plaques of AB also is a hallmark of Alzheimer's disease. While these two features have been under examination in Alzheimer's research, it is not clear how they interrelate.

At Barrow, Dr. Wu and his colleagues made the unexpected finding during a study examining effects of AB on basal forebrain nicotinic receptors. They first found that acetylcholine signaling at those receptors was highly sensitive to blockage even by low levels of AB. They also found that AB as small aggregates -- and not large plaques of AB -- had this same blocking effect. They next found that the type of nicotinic receptors showing this high sensitivity to AB has a different composition than other nicotinic receptor types previously identified and shown to be less sensitive to AB.

"We now believe that most of the nicotinic receptors in the basal forebrain have this unique composition and high sensitivity to AB," says Dr. Wu. "Our hypothesis is that as AB begins to increase, it first blocks acetylcholine signaling at these receptors, perhaps triggering events that eventually lead to neurodegeneration."

"This is the first time that AB has been proven to block acetylcholine at a concentration that occurs in Alzheimer's brain and thus could be pathologically relevant," says Ron Lukas, PhD at Barrow, who was part of the research team. "We also helped to implicate small aggregates of AB as being pathologically relevant."

"If we can identify a drug that would selectively keep the unique forebrain nicotinic receptors active even in the presence of AB, or block the effects of AB on those receptors, then we might be able to stave off the early steps in the Alzheimer's disease process," says Dr. Lukas.


Story Source:

The above story is based on materials provided by St. Joseph's Hospital and Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

St. Joseph's Hospital and Medical Center. "New Brain Receptor Identified as Possible Target For Alzheimer's Treatment." ScienceDaily. ScienceDaily, 20 July 2009. <www.sciencedaily.com/releases/2009/07/090716141223.htm>.
St. Joseph's Hospital and Medical Center. (2009, July 20). New Brain Receptor Identified as Possible Target For Alzheimer's Treatment. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/07/090716141223.htm
St. Joseph's Hospital and Medical Center. "New Brain Receptor Identified as Possible Target For Alzheimer's Treatment." ScienceDaily. www.sciencedaily.com/releases/2009/07/090716141223.htm (accessed July 24, 2014).

Share This




More Mind & Brain News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins